

TeraXML Enterprise Search

Version 6.0

Programmer’s Guide

Revision 6.1

Last Updated April 22, 2005

This is a Doclinx, Inc. Confidential document.

Unauthorized distribution of this document is prohibited.

Copyright © 2005 Doclinx, Inc. All rights reserved.

TeraXML 6.0 Programmer’s Guide Page 2

Table of Contents

1. Introduction... 7

2. TeraXML Architecture ... 8

2.1 Overview... 8

2.2 Indexing Subsystem.. 9

2.2.1 Catalogs... 10
2.2.2 STF Generation... 10
2.2.3 Catalog Synchronization... 11

2.3 Search Subsystem ... 11

2.4 Linguistics Subsystem .. 11

2.4.1 Tokenizer .. 11
2.4.2 Part-of-speech Tagger ... 12
2.4.3 Sentence Boundary Detection... 14
2.4.4 Base Noun Phrase detection.. 14
2.4.5 Named Entity Extraction... 15
2.4.6 Supported Languages.. 15

2.5 Document Parsing Subsystem... 16

3. TeraXML Internals ... 17

3.1 Indexing Subsystem – STF Generation .. 17

3.2 Indexing Subsystem – Catalog Synchronization .. 18

3.2.1 Dictionary Build.. 19
3.2.2 Locator Inversion .. 19
3.2.3 Optimization ... 19
3.2.4 Full-Text Database Creation ... 20

3.3 Indexing Subsystem – Catalog Merge .. 20

3.4 Search Subsystem ... 21

3.5 Linguistics Subsystem .. 22

3.6 Document Parsing Subsystem... 22

4. Key Data Structures and Concepts ... 24

4.1 Locators... 24

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 3

4.2 Attributes... 24

4.3 Virtual Arrays ... 25

4.4 LRU Hard disk & Database Buffering.. 26

4.4.1 Config.sys or template.sys .. 26

4.5 Context Trees .. 27

4.6 Thesaurus Structures... 28

4.7 Plurals ... 29

4.8 Obsolete Search Handles .. 29

5. TeraXML Query Language... 30

5.1 Query Examples.. 30

5.2 Grammar ... 32

5.3 Notes ... 35

5.4 OPNODE Query Parse Tree Structure.. 35

6. TeraXML Linguistics API .. 37

6.1 Processing a local file text file .. 37

6.1.1 Request Format ... 37
6.1.2 Response Format – Output XML.. 38

6.2 Error Handling .. 39

7. TeraXML Search and Retrieval API... 40

8. TeraXML XML over HTTP API.. 41

8.1 Using the SearchAgent API in XML Mode.. 42

8.1.1 Status Command ... 42
8.1.2 Show Command.. 43
8.1.3 Start Command ... 44
8.1.4 Stop Command.. 44
8.1.5 Search Command .. 45
8.1.6 Linguistics Command ... 46
8.1.7 Suggestions Command.. 47
8.1.8 Properties Command... 47

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 4

8.1.9 CatalogItem Command ... 48
8.1.10 Response attributes common to all commands ... 49
8.1.11 Using the SearchAgent API in Multiple Parameter mode .. 50

8.2 IndexAgent API .. 51

8.2.1 Copy Catalog Command... 51
8.2.2 Create Catalog Command ... 52
8.2.3 Delete Catalog Command ... 53
8.2.4 Database Command .. 53
8.2.5 Spider Command .. 54
8.2.6 Delete Command .. 56
8.2.7 Merge Command .. 56
8.2.8 Show Command.. 57
8.2.9 Status Command ... 57
8.2.10 Version Command .. 58
8.2.11 MapFile Command ... 58

8.3 Testing the SearchAgent and IndexAgent .. 59

9. TeraXML C API ... 60

9.1.1 DLL_API dpBuild (CHAR *path, DPAPI_PARMS *parms);................................. 60
9.1.2 DLL_API dpHtml2Stf (CHAR *path, SRC2STF_PARMS *parms); 63
9.1.3 DLL_API dpMerge (CHAR *path, MERGE_PARMS *parms);............................. 66
9.1.4 DLL_API catCreate(CHAR *root, CHAR *path, CHAR *name, FIELDS *extra,

UINT32 hashSize, CAT_HANDLE *handle); ... 68
9.1.5 DLL_API catOpen(CHAR *path, CHAR *name, INT mode, CAT_HANDLE

*handle); ... 70
9.1.6 DLL_API catClose(CAT_HANDLE handle);.. 70
9.1.7 DLL_API catDelItem(CAT_HANDLE cat, BIGINT docId, BOOLEAN

entireArchive); .. 71
9.1.8 DLL_API catDelFile(CAT_HANDLE cat, CHAR *file); 71
9.1.9 DLL_API catAddFile(CAT_HANDLE cat, CHAR *source, CHAR **props, INT

mode, INT filter);.. 72
9.1.10 DLL_API catEntryCount(CAT_HANDLE cat); .. 74
9.1.11 DLL_API catEntrySize(CAT_HANDLE cat, BIGINT docId); 74
9.1.12 DLL_API catEntryStringSize(CAT_HANDLE cat, BIGINT docId, INT item);..... 74
9.1.13 DLL_API catGetEntry(CAT_HANDLE cat, BIGINT docId, BYTE *buffer, INT

bSize); ... 75
9.1.14 DLL_API catGetEntryString(CAT_HANDLE cat, BIGINT docId, INT item, CHAR

*buffer, INT bSize);.. 75
9.1.15 DLL_API catUpdate(CAT_HANDLE cat, INT mode);... 76
9.1.16 DLL_API catPrimaryMerge(CAT_HANDLE cat, INT mode); 77
9.1.17 DLL_API catMakeHashLookup(CAT_HANDLE cat, UINT8 pct);........................ 77
9.1.18 DLL_API catFindFile(CAT_HANDLE cat, CHAR *fileName, FIND_MODE

mode, BIGINT *result);.. 78

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 5

9.1.19 DLL_API catSetLogging(CAT_HANDLE cat, CHAR *name, INT level); 78
9.1.20 DLL_API catEndLogging(CAT_HANDLE cat, BOOLEAN delFile);.................... 79
9.1.21 DLL_API catSetParms(CAT_HANDLE cat, SRC2STF_PARMS *sPtr,

DPAPI_PARMS *dPtr, MERGE_PARMS *mPtr); ... 79
9.1.22 DLL_API catEntryStringUpdate(CAT_HANDLE cat, BIGINT docId, INT item,

CHAR *su); .. 82
9.1.23 DLL_API catSetFuzzyBuild(CAT_HANDLE cat, BOOLEAN set, INT32 size, INT

maxCh);... 82
9.1.24 DLL_API catSetStemBuild(CAT_HANDLE cat, BOOLEAN set, INT32 size); 83
9.1.25 DLL_API catSetXMLSemantics(CAT_HANDLE cat, INT action, CHAR

*pathList); ... 83
9.1.26 DLL_API addMap8(CAT_HANDLE cat, CHAR *mapName, UINT16 *table);... 84
9.1.27 DLL_API catWaitToExit(DWORD millesecTO); ... 85

9.2 Search Subsystem API.. 85

9.2.1 DLL_API catXSOpen(CHAR *path, CHAR *name, XS_HANDLE *handlePtr); . 85
9.2.2 DLL_API catXSClose(XS_HANDLE xsh);... 86
9.2.3 DLL_API catXSSearch(XS_HANDLE xsh, CHAR *query, INT mode); 86
9.2.4 DLL_API catXSGetDoc(XS_HANDLE xsh, UINT index, BIGINT *docId, BIGINT

*hits); .. 87
9.2.5 DLL_API catXSGetDocList(XS_HANDLE xsh, DOCHIT *list, UINT start, UINT

nItems); ... 88
9.2.6 DLL_API catXSHitList(XS_HANDLE xsh, UINT16 *aaList, UINT16 *buffer,

UINT start, UINT nItems); .. 88
9.2.7 DLL_API catXSGetRelevancyList(XS_HANDLE xsh, DOCHIT *list, UINT start,

UINT nItems);... 89
9.2.8 DLL_API catXSGetDocCount(XS_HANDLE xsh, BIGINT *nDocs);................... 90
9.2.9 DLL_API catXSGetHitCount(XS_HANDLE xsh, BIGINT *nHits);...................... 90
9.2.10 DLL_API catXSSetRelevancyTags(XS_HANDLE xsh, INT value, CHAR *tag);. 91
9.2.11 DLL_API catXSGetDocMax(XS_HANDLE xsh, UINT32 *maxDoc, INT mode); 91
9.2.12 DLL_API catXSGetSearchTime(XS_HANDLE xsh, UINT32 *millSecs); 92
9.2.13 DLL_API catXSGetExtendedError(XS_HANDLE xsh, INT *error); 92
9.2.14 DLL_API catXSSetLogFile(XS_HANDLE xsh, CHAR *fileName); 93
9.2.15 DLL_API catXSGetCatalog(XS_HANDLE xsh, CAT_HANDLE *handlePtr);..... 93
9.2.16 DLL_API catXSFinish(VOID);.. 93

9.3 Building with the C API ... 94

9.3.1 Include Files.. 94
9.3.2 Library files... 94
9.3.3 DLL files ... 94
9.3.4 Compiler Options.. 94

10. Error Conditions and Recovery .. 95

10.1 Indexing Subsystem Error Codes.. 95

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 6

10.2 Search Subsystem Error Codes... 97

10.3 Linguistics Subsystem Error codes... 98

11. Language Codes.. 99

12. API Glossary... 100

13. Technical Support ... 101

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 7

1. Introduction

TeraXML Enterprise Search is a high-performance, scalable, XML and full-text Information
Retrieval and Information Extraction (Entity Extraction) system for processing documents in
various formats and languages.

TeraXML provides the following core capabilities:

• Capable of indexing and searching terabyte-sized data sets.

• Contextual search of XML data using the W3C XPath standard.

• Part-of-Speech Tagging, Sentence Boundary Detection and Noun-Phrase Detection.

• Named Entity Extraction for Names, Locations, Organizations and Dates.

• Support for most unstructured document formats including HTML, Adobe PDF and
Microsoft Office and 200 other formats.

• Industry's fastest indexing time of 6 gigabytes per hour using a single indexing server.

• The industry's smallest index files (35% to 90% of document size).

• Virtually unlimited scalability using multiple load-balanced search servers.

• Powerful query language includes advanced features like Boolean operators, fuzzy
search, wildcards, proximity search, and stemming.

• Unicode implementation provides native support for European, Middle-Eastern and
Oriental languages.

• 64-bit architecture supports multi-terabyte data sets.

• 100% Java version for any platform with a supported Java 1.4 Virtual Machine.

This document described Information Retrieval and Linguistics APIs offered by TeraXML.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 8

2. TeraXML Architecture

This section describes the core technologies used in TeraXML Enterprise Search.

2.1 Overview

TeraXML is designed for very-large scale collections (measured in terabytes) where indexing
speed of many gigabytes per hour are required. It supports multithreaded, multiple load-
balanced search servers allowing for virtually unlimited user-base scalability.

TeraXML provides several query features such as Boolean, wildcard, proximity, fuzzy and
stemming. XML contextual searching is done using the W3C XPath standard to specify XML
elements and/or attributes.

The system uses 64-bit data structures allowing for very large collections. Character data is
stored using Unicode, which allows TeraXML to support European, Middle-Eastern and Oriental
language collections that are searchable in their native language. TeraXML automatically selects
an appropriate word-break algorithm based on the current language being indexed.

TeraXML provides four types of services:

1. Capture a broad range of unstructured data.

• Multiple languages.

• Multiple repositories (files, websites, databases, lotus notes etc.).

• Multiple document formats (HTML, XML, PDF, MS Office and over 200 others).

2. Tokenize the captured data and perform linguistic analysis to extract part-of-speech tags,
sentence boundaries and Named Entities from the captured data.

3. Provide very high speed indexing of the tokenized data.

4. Provide fast, flexible search of document content and/or extracted entities to find relevant
information.

TeraXML converts data from all inputs into a common format called "Standard Token Format"
or STF which is stored in the Unicode character set. TeraXML’s "indexing" components process
the STF and build the index also referred to the "TeraXML Text Database". The "search"
components process search queries provide results from the Text Database.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 9

XM
L

STF

TeraXML
Full-Text
Database

TeraXML Indexer

STF

STF

STF

STF

STF

STF

Future
data source

Legacy
System

(Mainframe)

Easy to add support for
new document formats by

creating XML

Standard Token Format (STF) Collector
[also accepts XML]

Web
Sites

Web
SitesDocuments Database or

mail server

Audio/
Video files

XM
L

STF

TeraXML
Full-Text
Database

TeraXML Indexer

STF

STF

STF

STF

STF

STF

Future
data source

Legacy
System

(Mainframe)

Easy to add support for
new document formats by

creating XML

Standard Token Format (STF) Collector
[also accepts XML]

Web
Sites

Web
SitesDocuments Database or

mail server

Audio/
Video files

Figure 1 TeraXML Process Flow

TeraXML’s Capture and Index services form the "Indexing Subsystem". Part-of-Speech
tagging, morphological analysis and Named Entity detection services are provided by
TeraXML’s Linguistic Subsystem. Search services are provided by the "Search/Retrieval
Subsystem".

The Indexing Subsystem takes documents as input and processes the context, words, and
properties into an inverted index that provides fast lookup and searching of word combinations.

The Search/Retrieval Subsystem processes a search request and provides the search result
locations into the original document set.

2.2 Indexing Subsystem

TeraXML is based upon the concept of a catalog metaphor for the organization of its data and
functions. A catalog defines the set of files (or URLs) that comprise a collection. There can be
multiple collections or catalogs, which can be individually built, maintained and searched by the
software. Both a C and a Java API are available allowing external applications to use indexing
and search functionality.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 10

2.2.1 Catalogs

A catalog is defined as a single searchable set of documents. Catalogs support the following
operations:

• Document Addition

• Document Deletion

• Document Replacement

• Catalog Synchronization (also called Catalog Update or Catalog Build)

• Catalog Merge

Documents can be added, deleted or replacement in a catalog. At discrete intervals, the catalog
is synchronized (or updated) to reflect the changes (additions, deletions or replacements) since
the last synchronize operation. This step causes the changes in the catalog to be searchable.

It is assumed that the initial build of the catalog comprises a large number of files that creates a
"primary" database. Additions and deletions to a catalog are managed in an "update" database.
The update and primary databases can be merged at any time. The merge point is determined by
application requirements.

TeraXML catalogs support concurrent indexing and search. Search queries can be processed as
documents are added, deleted or updated into the catalog. Whenever a catalog is "updated", i.e.
all open search handles notified of the change immediately.

2.2.2 STF Generation

All input documents are first processed into an intermediate format called Standard Token
Format (STF). This is accomplished by a module called an "STF filter". TeraXML provides
three standard STF filters for processing HTML, XML, text and over other 200 document
formats.

TeraXML allows document meta-data, such as document properties to be specified at this time.
The STF Generation process and standard TeraXML filters are described in section 3.

Additional STF filters can be easily implemented to address special needs. TeraXML can index
and subsequently search any document that has been converted to STF.

Files that are "added" to a catalog are immediately converted into STF using the appropriate
filter. STF generated from an "added" file is concatenated to from a single STF file which can be
indexed subsequently.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 11

2.2.3 Catalog Synchronization

After multiple files have been added or deleted, the catalog is synchronized. The synchronize
operation builds the final, searchable full-text database from an STF input. This operation
consists over several steps, which include Dictionary Build, Inversion and Optimization. These
steps are described in detail in section 3.1.

2.3 Search Subsystem

Once a catalog is synchronized, TeraXML is able to provide search and retrieval services to an
application or a server process. The search API provides mechanisms for specifying a search
query, ordering results, and retrieving the result set. Since searching is a read-only operation,
several instances of TeraXML can be running and searching the same database concurrently.

TeraXML can also optionally build alternative data structures that enhance search lookup. The
alternative data structures allow provide stemming and fuzzy lookup functionality. Stemming is
the concept of taking words and folding them into root or base words by removing prefixes,
suffixes, plurals, tense, and other adaptations to the "core" word. Searches then can find slight
word variations by using a single version of the word. Fuzzy lookup structures are a
decomposition of words into their phonetic elements. This allows searches to compensate for
misspellings in both the input text and/or the search queries.

2.4 Linguistics Subsystem

TeraXML analyzes textual data, performs linguistic analysis and extracts meaningful data from
the supplied text.

TeraXML linguistics subsystem consists of several modules which can process English, French,
Italian, German, Spanish, Chinese, Japanese, Korean and Arabic.

2.4.1 Tokenizer

The Tokenizer module (TOK) provides word tokenization functionality based on the algorithms
provided in Chapter 5 of The Unicode Standard 3.0 and UAX #29 Text Boundaries in Unicode
4.0.0. Tailored segmentation is available for English to facilitate further linguistic processing.
Specifically, the tokenizer separates plural endings ("'s", "s'", and "z'") from their base form.

The tokenizer module returns two results – the token itself and its offset within the input text
stream.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 12

2.4.2 Part-of-speech Tagger

Part-of-Speech tagging is the process of identifying the grammatical parts of a sentence (called
"POS tags", such as nouns, verbs, adjectives, adverbs, prepositions, etc. TeraXML’s part-of-
speech (POS) tagger does three things: it assigns possible parts of speech to each word, it
guesses the part of speech for unknown words, and it decides which part of speech is the correct
one for words with multiple possible POS tags. In general, this is done by looking at the context:
the words and parts-of-speech adjacent to it.

English Part-of-Speech tags are shown below:

Tag Description Description/Example

AUX finite auxiliary verb "Helper" verbs: do, be, have

AUXG progressive auxiliary
verb

"Helper" verbs in "-ing" form: doing, having, being

CC conjunction Joins words and phrases: and, yet, but

CD cardinal number Counting numbers 1,2,3 or "thousand dollars".

DT determiner The red ball. A pause to consider.

EX expletive "there" There is a monster under the bed.

FW foreign words Non-English words appearing in English text: adieu, mañana

IN preposition Links pronouns, nouns, or phrases to other parts of a sentence,
and frequently indicates relationships in time and space:
The dog is on the couch.
He wrote the paper during study hall.

JJ adjective Describes a noun: The quirky professor kept odd office hours.

JJR comparative
adjective

"-er" adjectives: the shorter boy, the older woman

JJS superlative adjective "-est" adjectives: The tallest player on the team.

LS itemization tokens Like the roman numerals in the beginning of a book: i, ii, iii,
iv.

MD modal verb Expresses ideas such as possibility or intention: can, could,
would, need.

NN common noun A "thing": car, truck, building.

NNP proper noun Generally, things that are capitalized, such as personal or place
names: Tom Cruise, Paris.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 13

NNPS plural proper noun Wal-Marts

NNS plural common noun Cars, trucks, buildings

PDT predeterminer All the trees

POS possessive "'s" That is Casey's bat.

PRP Pronoun Stands in for a person (or people) or thing: He was late for
work. They are not going to win this game. It is on the
nightstand.

PRP$ possessive pronoun Show ownership: yours, mine, ours, his, hers, its.

RB Adverb Usually modifies a verb and ends in "-ly": quickly sinking,
sang loudly.

RBR Comparative adverb more, less

RBS superlative adverb most, least

RP deictics (directional
adverbs)

She stumbled backwards.

SYM symbols Non-punctuation marks: ® © > <

TO the preposition "to" To

UH interjection D'oh!

VB base form verb The infinitive: to spend, to save.

VBD past tense verb Action happening in the past: played, sang.

VBG progressive aspect
verb

Ending in "-ing": laughing, choking.

VBN past participle verb Generally ending in "-ed" or "-en": written, passed

VBP verb base forms The infinitive used in present tense

VBZ third-person singular
verb

Frequently ends with "-s": She sends flowers.

WDT interrogative
determiner

Which?

WP interrogative
pronoun

Who? What?

WP$ interrogative
possessive pronoun

Whose?

WRB interrogative adverb When? Where? Why?

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 14

$ dollar sign They pay $25/hour.

`` start quotation mark He said "No, I won't…

'' end quotation mark …do that"

, Comma Pears, oranges, apples.

. Period Used at the end of a sentence or for abbreviations: Mr. Smith
went to Washington.

(left parenthesis (

) right parenthesis)

: other punctuation ; ! ?

2.4.3 Sentence Boundary Detection

The Sentence Boundary Detection (SBD) module detects the start and end of each sentence in
the input text stream. For English, this process is complicated by the fact that the period that is
used to end a sentence is also used within a sentence for other purposes (such as abbreviations).
Periods need not end sentences when they end an abbreviation; however, periods can end
abbreviations and at the same time end a sentence. They also interact with other punctuation,
especially quotation marks.

2.4.4 Base Noun Phrase detection

The Base Noun Phrase Detection module (BNP) detects Base Noun Phrases. One of the most
important kinds of structure to assign to a document is the identification of noun phrases (NP). A
phrase is a self-contained group of words with a discrete meaning; a noun phrase is a phrase that
functions as a noun in a sentence. Noun phases can also be recursive. That is, a noun phrase may
contain other noun phrases as component parts. For instance, the following are all noun phrases:

1. it
2. apples
3. the apple
4. the green apple
5. the round red juicy apple
6. the green apple on the table
7. the red apple on the table in the kitchen
8. the red apple that I ate at lunch yesterday

A base noun phrase is a noun phrase that is not recursive, that is, it doesn't contain other noun
phrases inside it. So, the first four noun phrases in the list above are base noun phrases, and the

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 15

remaining ones are complex noun phrases that contain base noun phrases inside them. Below, the
list of noun phrases is repeated with the base noun phrases bracketed:

1. [it]
2. [apples]
3. [the apple]
4. [the green apple]
5. [the round red juicy apple]
6. [the green apple] on [the table]
7. [the red apple] on [the table] in [the kitchen]
8. [the red apple] that [I] ate at [lunch] yesterday

2.4.5 Named Entity Extraction

TeraXML’s Named Entity (NE) module finds named entities in documents and classifies them
into person, organization, location, or date. It looks at both the named entity and its context to
determine whether it's a named entity, and if so what kind it is.

A Named Entity is a proper name. It can be the name of a person ("George Bush"), or an
organization ("The White House"), or a location ("Washington"). It can also be a particular date
("July 14, 1789", but not "Tuesday").

2.4.6 Supported Languages

The following table describes the languages currently supported by the TeraXML Linguistics
Subsystem.

Language Tokenization POS SBD BNP Named
Entites Stemming Compounds Readings

English yes yes yes yes yes yes no n/a

Chinese yes yes yes no no n/a n/a yes

Korean yes yes no no no yes yes no

Japanese yes yes yes yes yes yes yes yes

German yes yes yes yes yes yes yes n/a

French yes yes yes yes no yes no n/a

Italian yes yes yes yes no yes no n/a

Spanish yes yes* yes yes no yes no n/a

Arabic yes yes* yes no yes yes no no

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 16

2.5 Document Parsing Subsystem

TeraXML can process text contained in many different document formats. TeraXML offers
built-in support for parsing XML, HTML, Text, PDF and MS Word documents. Additionally,
over 200 other document formats are supported for which the parsing functionality is provided
by a set of shared libraries which are available for a variety of platforms.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 17

3. TeraXML Internals

3.1 Indexing Subsystem – STF Generation

As files are added to a catalog, a parser (also called a "TeraXML Filter") is selected to parse the
input file. TeraXML Filters output a data stream in a format called "STF" (Standard Token
Format). All documents input to TeraXML are converted to STF for subsequent indexing.

TeraXML includes several filters to handle different document types and to perform lexical
analysis on the input documents. The TeraXML API also provides mechanisms to create custom
filters to handle new document types or data sources.

HTML filter: This filter handles HTML files. It extracts title and meta-tag information from
the input HTML files. As web content frequently contains incorrect or
malformed HTML, this filter is specially designed to handle those cases.

XML filter: This filter handles valid XML files and forms the context tree that allows
contextual searching of XML documents. It checks XML files for validity
only and does not perform any XML parsing. It is schema or DTD
independent and can accept any valid XML file.

Generic filter: This filter handles over 200 file formats other than HTML, XML, and plain
text. It is capable of extracting words from many different file types. The
Generic filter can determine the file type by reading the first few bytes of the
file and is not dependent on the extension of the input file.

This filter also detects a pre-determined set of document properties that can be
converted into a context tree and used for searching.

Text filter: This filter handles text files and HTML files. It is extremely fast since it only
extract words in the input stream and ignores all other information. It is used
where speed is of utmost importance.

PDF filter: This filter handles PDF files. It internally converts PDF files to an XML
representation which is contextually indexed. PDF metadata and properties
are preserved in the generated XML. TeraXML’s contextual XML indexing
allows searches to be limited by or to the metadata (properties) stored in the
PDF document.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 18

MS Word filter: This filter is identical to the PDF file except that it can handle MS Word
documents.

Individual files, entire directories or lists of files can be added to a catalog. Contents of each file
added to the catalog are parsed by one or more filters which generate Standard Token Format
(STF). The STF stream contains all words, meta-data and context information required to create
the full-text database.

It should also be noted that the word break algorithm is encapsulated in the parsing routines. All
determination of what characters comprise a "word" is defined in the filters. Regular expressions
may be specified to modify the built-in word-break algorithm. Each filter emits STF tokens
indicating words, punctuation, markup, and context. The XML filter builds an XML "Context
Tree" that allows the user to specify an XPath to perform contextual search queries.

STF creation can be controlled by setting several options through the TeraXML API.

3.2 Indexing Subsystem – Catalog Synchronization

The Catalog Synchronization processes any pending changes (additions, deletions or updates)
and creates the searchable Text Database. The process is also referred to a "Catalog Build".
This process consists of the following steps:

• Dictionary Build

• Locator Inversion

• Optimization

• Full-Text Database Creation

A single API call performs all the steps of building the full-text database. Each step supports
several options that are specified in parameter blocks defined for that step.

An application first creates a new catalog entry in a catalog root directory. It is envisioned that
this root will be the single location where sets of catalogs reside. Once a catalog is created, a
collection of files is added to the catalog. After all of the original set of files is added a call is
made to synchronize the catalog. This call starts the catalog build steps to yield a searchable
full-text database.

After a catalog is initially built, files can then be added, deleted or replaced in the catalog. When
these changes to the collection are ready for indexing, another synchronize operation is
performed. All changes made after the initial catalog build are stored in an "update" database.
However, the search software treats the two separate databases (primary and update) as one
logical entity. All index structures created for the two separate databases can be merged together

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 19

for optimal search performance. This merged database is identical to a database that was built in
a single operation.

3.2.1 Dictionary Build

The Dictionary Build step scans the STF file and finds all unique words in the input data set.
TeraXML supports multiple dictionaries called Dictionary Regions, which are logically separate.
Up to 16 Dictionary Regions can be defined. Each Dictionary Region can be further subdivided
into sub-regions. Dictionary sub-regions are a performance optimization to enhance various
classes of field specific search behavior and are optional. Dictionary sub-regions may be
classified as being of a specific "type" as follows:

 Text

 Hypertext Link

 Integer (32-bit)

 Float (32-bit)

 Date

 Time

 Money

The Dictionary Build step optionally constructs stemming or fuzzy search data structures.

TeraXML supports user specified "stopwords". Stopwords are those words that occur very
frequently and therefore their utility in searching is marginal. The removal from the full-text
database provides a considerable performance enhancement and index size reduction.

3.2.2 Locator Inversion

The Locator Inversion step consists of building a list of locations (Locators) where all words in
each dictionary occur. Locators are packed data structures that define a word’s physical location
in the input data set, and also store context or type information associated with that word. The
number of Locators is directly proportional to the input data size and therefore it can be very
large. Due to this, Locator Inversion requires the most processing time of all build steps.

3.2.3 Optimization

The Optimization step reorganizes the Dictionary and Locator data structures created in prior
indexing steps. It also performs validity checks on the data. This step is essential in obtaining
high performance searches.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 20

3.2.4 Full-Text Database Creation

Full-Text Database Creation is the final indexing step. It creates the full-text database file from
intermediate files created in prior indexing steps. This is the only file required by TeraXML to
perform full-text searches on the input documents.

The Full-Text Database can be optionally encrypted in this step to prevent unauthorized access to
the database.

HTML/
XML

225
document
formats

Generic
Parser

STF
File

Dictionary

Fuzzy
Data

Stem
Data

Locators

Locator

Inversion
step

Optimized
database

files

Database
Creation

step
TeraXML
Full-Text
Database

Context
Data

Custom
Speech
Parser

HTML/
XML
Parser

Audio
or

Video

Optimization

step

Dictionary
Build
step

Figure 2 Indexing Subsystem Process flow

3.3 Indexing Subsystem – Catalog Merge

Any changes made after the initial creation of a catalog are saved in the "update" full-text
database. Consequently, the "update" full-text database continues to grow as more and more
changes are applied to the catalog. The Catalog Merge process combines the primary and update
full-text databases and all associated data structures to produce a single, merged primary full-text
database.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 21

Catalog Merge involves merging the thesaurus structures, context trees, dictionaries and locators.
There is also an interaction with the context and locator merging required because joining
context trees can change the values of context attributes. A mapping array is created in the
context process that is passed to the dictionary/locator merge operation in order to fix up these
values.

Thesaurus merge is a simple process where the two associative mapping arrays are merged into
one common map. New items from the update map are simply added to the result map while
duplicate entries are removed.

The Dictionary Merge process merges the primary and update Dictionaries into a new combined
primary Dictionary. Similarly, the Locator Merge process merges the primary and update
Locators into new combined primary Locators. Any changes required to the output Locators are
provided by the mapping array. This mapping change can also result in an update to the locator-
packing schema.

Merged
Thesaurus

files
Thesaurus

Merge
Thesaurus

files

Primary
database

Merged
Primary
database

Update
database

Context
files

Context
Merge

Merged
Context

files

Database
Creation

Step

Optimization

Step

Dictionary
and Locator

Merge

Figure 3 Catalog Merge Process Flow

3.4 Search Subsystem

Catalog Search provides the functionality to perform full-text search queries on the entire
catalog. Catalog Search is designed for fast concurrent (multithreaded) searching.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 22

Catalog search uses a list metaphor to describe the results of a search. For each search, a list is
created, the search performed, and the results are retrieved from the list. A search query is
specified in terms of the TeraXML query language. The XPath syntax is supported for
performing XML contextual searches. Catalog search provides the following search features:

• Full contextual search of XML documents using XPath

• Standard Boolean searches (and, or, not)

• Wildcard searches

• Proximity searches

• Fuzzy searches

• Stemming

• Natural Language searches

• Range searches based on data type

• Parametric (fielded) searches

While the catalog mechanism supports both a primary and an update database, searches and the
corresponding results are seamlessly merged by the software to give the appearance of a single,
logical collection of documents.

When a catalog is updated, all search objects are notified that the catalog has been updated so
that any data structures within applications using the system can be updated. For example, if an
application initially determined that there were x items in the catalog when first opened, then it
would be notified of a change so it could then determine via the API the new total number of
documents in the Text Database.

3.5 Linguistics Subsystem

The Linguistics Subsystem functions as a server within TeraXML and provides the linguistics
services within TeraXML. Data communication with this sub-system is through XML messages.
The results of linguistic processing are returned as XML for further processing by other
TeraXML modules.

3.6 Document Parsing Subsystem

Document Parsing is the process of extracting text from document in various formats. The
Document Parsing module within TeraXML functions as a server. Documents are sent to the
server and the extracted text is returned by the server in an XML format for processing by other
TeraXML modules.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 23

TeraXML offers built-in support for parsing XML, HTML, Text, PDF and MS Word documents.
Additionally, TeraXML supports over 200 other document formats from which it can extract text
to be indexed. Parsing functionality for these other documents is provided by a set of native
shared libraries that are available for a variety of operating systems.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 24

4. Key Data Structures and Concepts

4.1 Locators

Locators are bit-packed data objects that are byte aligned. A locator indicates where and in what
context a word location occurs. All locators have the location information along with optional
type or context information. Location information is the DOC, PAR, and WORD fields. DOC is
the document ID corresponding to an individual file. The PAR field is a paragraph number.
Paragraphs are determined by the parser logic. With the generic parser (document formats other
than HTML, XML and text), the filter software automatically picks up this information. The
HTML/XML filter uses a definition file that tells which tags are to be interpreted as paragraph
markers.

A locator can be defined by a sequence of integer pairs {i,l} where i is the index of the attribute
and l is the length in bits. A pack/unpack data structure defines a locator mapping for an
individual database. This structure is an array on integer pairs defining the locator attribute fields
present:

e.g. {{0, 7}, {3, 5}, {6, 10}, {15, 9}} word indicate a locator with attributes 0, 3, 6, and 15
present. The size of the locator would be 31 bits or 4 bytes in length.

4.2 Attributes

TeraXML provide 16 attributes, each 16 bits in length. Two attributes can be combined to store
32-bit information. Some of the attributes are reserved by the system while others are available
for to the user for custom parametric search applications. For example, line number and page
numbers could be stored to enable searching by line or page numbers.

Reserved attributes are shown in the table as follow:

Attribute
Number

Predefined usage

0 and 1 Document ID

2 Document ID prime (extension)

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 25

3 and 4 Paragraph number

5 Paragraph number prime (extension)

6 Word offset

7 Title (or heading) level

8 to 14 User defined (available for customization)

15 XML context identifier

A special system attribute (attribute 16) is reserved for bit settings and is not used in the catalog
search schema.

4.3 Virtual Arrays

Both the catalog system and the basic search and retrieval functions use virtual arrays. Virtual
arrays provide a seamless mechanism for handling large data sets backed by a file. The method
provides fast access to the data without the overhead of dealing with file system details. The
TeraXML kernel must be able to handle variable sized lists of objects that can be quite large.
Therefore, a simple virtual buffering system that supports unlimited size arrays in an efficient
manner simplifies the coding effort. Note that the virtual array system does NOT do the virtual
memory management; that function is supplied by the LRU buffer manager. The system provides
a way to "lock" current memory to avoid contention for critical sections.

The header file varray.h defines the virtual array buffering methods.

The following prototypes partially describe the functionality of the virtual array system:

INT vaOpen(VARRAY *va, CHAR *fileName, VOID *mem, UINT memSize, UINT32
vaSize, INT eltSize, UINT16 flags);

This method creates a virtual array with a memory buffer of size memSize. Each array
component is of size eltSize and the upper limit to the virtual array is vaSize. A named file can
be used for backing store. The flags control several operational characteristics of the array. For
instance, the upper size of the array can be "Unlimited" which allows as much memory as the file
system permits.

VOID *vaAddr(VARRAY *va, UINT32 elt);

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 26

This method returns the address of element elt in virtual array va.

VOID *vaPtr(VARRAY *va, UINT32 elt, INT size);

This method returns a pointer element elt of the virtual array va. The returned pointer defines a
piece of memory at least size bytes in length. The memory buffer is "locked" during this
operation to ensure that the LRU system does not "re-use" the memory.

VOID vaClose(VARRAY *va);

This method destroys the virtual array va.

4.4 LRU Hard disk & Database Buffering

A sophisticated virtual buffering system for CD-ROM and hard disk files is essential for
TeraXML’s performance. The buffer management system is independent of the virtual array and
File I/O abstractions. This allows sharing of buffers across multiple data objects. The system
works with a pool of 2 KB buffers. These buffers will be entered into a pool that provides
memory for all I/O and virtual array buffering. Buffer requests are multiples of 2 KB. Memory
can be moved around in the pool to allow larger blocks to be made by compacting memory. The
buffering strategy is designed to allow flexibility in terms of buffer management along with
providing better performance based upon frequency of use and LRU aging parameters. The
header file lru.h defines the LRU buffering functions.

4.4.1 Config.sys or template.sys

The template.sys file contains several indexing and tuning parameters. Following are example
entries found in the template.sys file. This is the prototype .sys file for all indexing runs. The
build software sets most of the values and the ones that can be changed are few and enumerated
in the following discussion.

dpControl.parAttrs - This is the list of attributes that are NOT reset upon encountering a new
paragraph. Note that attribute values 9 and 10 are ignored because they are not included in the
locator output as dictated by the several regions defined subsequently. In this example, multiple
paragraph titles are allowed. Excluding this value will cause title attributes to be set to 0 on every
new paragraph.

All sections starting with region: These define the separate dictionary regions and are numbered
0 to 15. If three region block are defined, then DRIs 0, 1, 2 can be used. The region settings
control individual locator and dictionary characteristics. The region.type controls the data type
for the dictionary (e.g., text, link, date, INT32, etc.).

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 27

 region.type: type of region (enclosed in "")
 region.sub_aaidx: indicates in DRI is organized into sub-regions based on the index.
 region.sub_length: # of bits to required for the sub-region aaval
 region.locaAttrs: Vector of integers designating aaidx values to include in locators.
 primaryDpData.maxAttValue This is an output value that shows the maximum value for each attribute index.
 primaryDpData.attLength This array indicates the number of bits required for each locator aaidx value.

dpControl.createOutline = FALSE;
dpControl.createCitref = FALSE;
dpControl.createIVA = FALSE;
dpControl.parAttrs = {7,9,10,15};
dpControl.formAttrs = 0;
dpControl.stopThreshold = 0;
dpControl.titlePrefixLength = 128;
dpControl.docTitleThreshold = 0;

region.type = "text";
region.excludeMask = 0;
region.excludeValue = 0xffff;
region.sub_aaidx = 9;
region.sub_length = 4;
region.locAttrs = {"0","7","8","15"};

region++;

region.type = "hyperlink";
region.excludeMask = 0;
region.excludeValue = 0xffff;
region.sub_aaidx = -1;
region.sub_length = 0;
region.locAttrs = {"0"};

region++;

region.type = "text";
region.excludeMask = 0;
region.excludeValue = 0xffff;
region.sub_aaidx = -1;
region.sub_length = 0;
region.locAttrs = {"0","8"};

primaryDpData.maxHeadingLevel = 1;
primaryDpData.maxDocHeadingLevel = 1;
primaryDpData.docIdxRecordLength = 138;
primaryDpData.collocateTopTitles = FALSE;
primaryDpData.attFlagOrMask = 0;
primaryDpData.maxAttValue = {6,0,0,2,0,0,119,1,1,14,0,0,0,0,0,0};
primaryDpData.attLength = {3,0,0,2,0,0,7,1,1,4,0,0,0,0,0,0};
primaryDpData.dbOffsets = {0,0,0,0,0,0,0,0,0,16384,0,0,18432,22528,
 24576,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0};
primaryDpData.dbLengths = {0,0,0,0,0,0,0,0,0,1330,0,0,4096,2048,7,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
primaryDpData.dbVolumeSeqs = {-1,-1,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,-1,-1,-1,
 -1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0};

4.5 Context Trees

Context relationships are represented as an n-ary tree with an associate lookup that enables
locating sub-trees quickly. Context trees use VArrays to hold the fixed and variable length data.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 28

A hash thread joins common nodes providing efficient lookup across common sub-trees and
nodes. Each node or tag element is represented by a numerical range that encompasses the list of
ordered node numbers describing the child nodes and itself. A leaf node has a single value.

Merging context trees involves walking each level-1 sub-tree in the update tree to find whether
that tree is present in the main tree. If it is, then all locator attributes represented by the merged
sub-tree must be updated to the values found in the matching primary tree. If the sub-tree does
not match, then it is added as a level one sub-tree to the primary tree and again locator attribute
values representing the context numbers are again mapped.

Searching for context entails looking up the context path in the context tree. This will yield a
range or set of ranges based on the context attribute. The search then uses these attribute
numbers to qualify matching words in the query.

The structure for a context node is as follows. Note that a flag field provides special information
about a node (e.g. whether the node is a tag or an attribute).

struct CNODE
{
 INT32 cn_child; // 1st child node #
 INT32 cn_parent; // parent node #
 INT32 cn_next; // sibling node #
 INT32 cn_hashThread; // pointer to name equivalent siblings in other sub-trees

 UINT16 cn_attrLo; // Low value of child nodes
 UINT16 cn_attrHi; // High value (the node # itself)
 INT32 cn_symbol; // Index of node symbol in varray
 UINT16 cn_flags; // Node flags
};

4.6 Thesaurus Structures

There are three thesaurus objects defined and used for enhancing word lookup alternatives: stem
thesaurus, fuzzy thesaurus, and a classical thesaurus of related root meanings.

Each thesaurus is represented as an in-memory associate array with word keys and a comma-
separated list of alternatives. The thesaurus object can automatically save and load thesauri
information from a file. Merging of a thesaurus simply requires that all keys in the two lists are
represented and that any duplicate alternatives are removed.

The classical thesaurus allows custom thesauri to be developed specific to an application or a
database. It is well know that thesaurus should be context aware. It is very important to use a
legal thesaurus for collections of legal documents as opposed to using a standard thesaurus or
even a medical thesaurus. The wrong thesaurus can create bad or even dangerous matches in an
inappropriate context. Having a general-purpose thesauri mechanism achieves the greatest
database design flexibility.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 29

Stem thesauri are created during the dbuild operation. Unique words are passed to the catalog
manager via a callback. The stemming algorithm is based upon "An algorithm for suffix
stripping", M. F. Porter and originally published in "Program", 14 no. 3, pp. 130-137, July 1980.
Each unique word is analyzed for removal of suffixes, plurals, prefixes, tense variations, etc. A
"base" or root word is created for any of these situations. A thesaurus list is then created using
this "stem" word as the key. During word search, the stem key is created from the query word
and used to access all other words with the same common stem. The header file stem.h defines
the stemming classes and methods.

The fuzzy thesaurus is a list of alternative words that are related by phonetic pronunciation based
on the Double Metaphone (DM) algorithm. Lawrence Phillips developed the Double Metaphone
algorithm. Like the Soundex algorithm, it compares words that sound alike but are spelled
differently. DM was designed to overcome difficulties encountered with Soundex. This
implementation was modified from a program written by Gary A. Parker and published in the
June/July, 1991 (vol. 5 nr. 4) issue of C Gazette. As published, this code was explicitly placed in
the public domain by the author. A thesaurus with the phonetic base as a key provides a list of
words related to a given word. This enables correction of misspelled words in both the
collection and in queries. The header file dmetaph.h defines the phonetic reduction class and
methods.

4.7 Plurals

The pluralization method employs a public domain algorithm based on "An Algorithmic
Approach to English Pluralization" by Damien Conway. Given a word, all plural and non-plural
variants are returned as a comma separated list. The header file plural.h defines the pluralization
class and methods.

4.8 Obsolete Search Handles

If read-only XS search handles are open during a catalog update operation, they become obsolete
upon completion of the build or merge process. This happens as the operation completes. The
update completion sequence will invalidate handles during the finalization of the build or merge.
The handles then have to be closed and re-opened in order to access the new database
information of the catalog. Any functions XS Search operations using an obsolete handle return
an XS_OBSOLETE error.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 30

5. TeraXML Query Language

TeraXML provides a rich and powerful query language to perform context-based XML and full-
text queries on searchable databases. The query language is an enhanced form of the FTQL (Full
Text Query Language) standard developed in the late ‘80s.

XML contextual search queries are supported using the W3C XPath standard. XPath information
is available at http://www.w3.org/TR/xpath.html. The TeraXML Query language provides a rich
feature set to perform Boolean, fuzzy, proximity and range searches. Wildcards, stemming and
different data types are also supported. XML context-based queries may be freely mixed with
full-text queries to perform complex searches.

TeraXML provides very flexible data organization schemes with features such multiple
dictionaries, data types (text, number, float, date and currency), partitioned indexes, fields and
the ability to store state information with each and every word. The query language has several
operators to leverage these advanced features, which enable the design of optimal data storage
schemes allowing very-large knowledge sets to be indexed and searched efficiently.

TeraXML search query language syntax is described below. Examples are presented first to
illustrate common queries followed by the precise grammar.

5.1 Query Examples

1. Given the XML markup:

<name MI = "J">Schmitt
<first>Steve</first>

</name>"

a. Find documents that contain "steve" in the first name:

steve IN XPATH "name/first"

b. Find documents where the value of the attribute "MI" in <name> is equal to "J".

"J" in xpath "name/@mi"

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://www.w3.org/TR/xpath.html

TeraXML 6.0 Programmer’s Guide Page 31

2. Given the XML markup:

<employee-record>
 <identification>
 <name nickname = "buddy">

 <first>joe</first>
<middle>bob</middle>
<last>thornton</last>

 </name>
 <ss number = 366546660>
 <age>47</age>

</identification>
<status>disabled</status>
<salary>40000<salary>

</employee-record>

The following are some searches using XPath notation to describe the record:

a. Relative path examples:

Find documents where <salary> is between 30000 and 50000:

XPATH //salary BETWEEN 30000,50000

Find documents where <ss> has an attribute "number" with a value of "366546660".

XPATH //ss/@number = 366546660

Find documents where last name starts with "thorn".

thorn* in XPATH name/last

b. Absolute path examples

Find documents where employee’s age is less than 50.

XPATH "/employee-record/identification/age" < 50

Find documents where employee’s status is "disabled".

disabled in XPATH "employee-record/identification/status"

3. Search for BOB or RAY and COMEDY but do not include HOPE. (Parentheses may be

used to explicitly specify operator precedence).

(bob OR ray) AND comedy BUTNOT hope

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 32

4. Search for words with proximity operators:

(door AND garage) proximity 4 words
(door AND concrete AND heavy) proximity 2 paragraphs

5. Search for a number between 1.0 and 2.5 in field 4.

FIELD 4 BETWEEN 1.0, 1.5

6. Search for all dates after April 26, 1957 in fields 2 and 3.

FIELD 2,3 > 19570426

Note: This query uses an integer (32-bit) collating sequence for representing dates (Y2K

compliant).

7. Search for part number specification (e.g. catalog-model-partno) in documents 1 .. 10.
Assume CATALOG is defined as "9", MODEL as "10" and PARTNO as "47".

FIELD CATALOG>47 AND FIELD MODEL BETWEEN 4,8 AND FIELD
PARTNO=1145 SET 1,10

8. Search for "Desert Fox" or "Erwin Rommel" in field Author.

Assume AUTHOR is defined as DRI 2 FIELD 8[10].

 "desert-fox" IN ALL OR "Erwin-Rommel" IN AUTHOR

9. Search for "Bob Hope" in any field except field 8.

 "bob hope" in field ~8

5.2 Grammar

1. Lower case words are meta-definitions (i.e. non-terminals defined in terms of terminals

and other non-terminals).

2. UPPER case words are terminal symbol KEY or reserved words.

3. The "|" symbol implies "OR".

4. The "*" symbol means the previous object repeated 0 or more times.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 33

5. Literal punctuation is specified with double-quotes. (e.g. "&" implies the ampersand

character).

6. Optional items are specified using []. (e.g. WORD[S] means WORD or WORDS).

7. The sequence """ denotes a single double-quote character.

8. A definition in comments /* ... */ is an English explanation or a regular expression
definition.

 query ::= set_query
 | set_query SET range-list

 set-query ::= term
 | set-query AND term
 | set-query BUTNOT term

 term ::= field-item
 | "&" field-item
 | term OR field-item
 | "&" term OR field-item

 field-item ::= compare-condition
 | between-condition
 | proximate-condition

 compare-condition ::= field-spec comp-op word

 comp-op ::= "=" | "!=" | "<" | "<=" | ">" | ">="

 between-condition ::= field-spec BETWEEN word "," word
 | field-spec OUTSIDE word "," word

 proximate-condition ::= phrase-term
 | phrase-term PROXIMITY distance

 distance ::= constant group-unit

 group-unit ::= WORD[S]
 | SENTENCE[S]
 | PARAGRAPH[S]
 | DOCUMENT[S]

 phrase-term ::= phrase-list
 phrase-term phrase-term-op phrase-list

 phrase-term-op ::= "+" | "~"

 phrase-list ::= field-phrase
 | phrase-list "," field-phrase

 field-phrase ::= phrase
 | field-spec ":" phrase

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 34

 | phrase IN field-spec

 phrase ::= phrase-item
 "(" set-query ")"

 phrase-item ::= approx-word
 | phrase-item order-op approx-word

 order-op ::= " " | "-"

 field-spec ::= DICTIONARY constant field-list
 | DRI constant field-list
 | XPATH xpath-spec
 | TAG xpath-spec
 | field-list

 xpath-spec ::= A valid W3C XPath specification

 field-list ::= ALL
 | FIELD[S] aalist-spec

 aalist-spec ::= aalist-item
 aalist-spec "," aalist-item

 aalist-item ::= constant
 | "~" constant
 | constant[aaval-spec]
 | "~" constant[aaval-spec]

 aaval-spec ::= aaval-spec-item
 | aaval-spec "," aaval-spec-item

 aaval-spec-item ::= constant
 | constant ".." constant

 approx-word ::= word
 | "@" word

 word ::= real-word
 | """exact-order-phrase"""

 real-word ::= numeric
 | id
 | id"*"
 | id"?"*

 range-list ::= constant-list
 | BETWEEN constant "," constant
 | OUTSIDE constant "," constant

 constant-list ::= constant
 | constant-list "," constant

 exact-order-phrase ::= real-word
 | real-word " " exact-order-phrase

 constant ::= /* [0-9]+ */

 id ::= /* [A-Z][A-Z0-9_]* , or if in quotes,
 can be any non-blank character */

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 35

 numeric ::= /* constant or floating pt. # (e.g. 1.23) */

5.3 Notes

1. A <real-word> definition can vary from database to database. Right truncation style
wildcards are supported. The representation may vary according to word definition, but
will support the following level of functionality:

Form 1: xxx* <- matches ALL words starting with "xxx"

Form 2: xxx?? <- matches ALL words starting with "xxx" and are of length <= 5.

2. A <constant> is an integer (e.g. 47).

3. A quoted word is not interpreted, so anything inside will constitute a word except for a
blank (' '). Blanks inside a quoted string will be construed as a separator denoting a string
of words to find in exact order. Some implementations may have this feature turned off.

4. A NOT condition can not form a single term.

5. Sentences may or may not be implemented in a specific application.

6. The "&" symbol is an anchor. It forces a term to be evaluated first instead of the MIN-
term order.

7. The "@" symbol means to find the word CLOSEST to the given word.

8. The "~" symbol means the NOT operator.

5.4 OPNODE Query Parse Tree Structure

A query is processed by the query module and converted into an OPNODE parse tree. The tree is
then scanned in preorder by the boolean logic manager to evaluate the expression and compute
the results of the search. The result of the search is a list of locators satisfying the query.

Each leaf node represents a search word while parent nodes denote the connectivity and
relationships between the nodes. Each node has an operation type along with a relationship
vector. The type specifies the Boolean operation to perform on the node (along with the
evaluation stack, if not empty). The relationship vector is an order list of attributes and codes that
specify what attributes in the word locator must be satisfied to qualify for a "match". One or two
symbols are associated with each leaf node – a second symbol exists for opnode function types

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 36

such as range searching (e.g. upper and lower bound). Results for each operation and word
lookup counts are also stored in the node after evaluation.

A stack accumulator is used in conjunction with evaluation the Boolean tree. This allows for
evaluation of nested expressions (i.e. parenthetical expressions). A ‘load’ operation puts a word
or sub-expression on the stack. All other operations apply the node function the contents of the
stack and the node operand.

Given a query expression: "(word1 + word2 + ‘word3 word4’) proximity 1 paragraph", the
resulting parse tree would look like:

LOAD
""

Relat:[]

AND
""

 [par,1]

LOAD
"word1"

[]

AND
"word2"
 [par,1]

LOAD
"word3"

[]
Key:

[..]: Denotes relationship vector
LOAD: Opnode type – load accumulator
AND: Opnode type – perform Boolean ‘AND’
EXACT: Opnode type – perform exact order
Par: Attribute #3
Word: Attribute #6

EXACT
"word4"

Figure 4: OpNode Tree

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 37

6. TeraXML Linguistics API

TeraXML offers a Web (http) based API using XML messages to access the linguistics
information extracted by TeraXML. The client sends a request in the form of a URL with
parameters and the server responds with a XML data containing the results of the analysis
requested by the client.

TeraXML Linguistics API can process a text file and return one of the following items:

1. Part-of-Speech Tags.

2. Base Noun Phrases.

3. Sentences.

4. Named Entities.

6.1 Processing a local file text file

The TextAnalyzer.jsp servlet allows the user to specify a local filename to be analyzed by
TeraXML’s Linguistic Subsystem.

6.1.1 Request Format

Assuming the TeraXML is running on hostname "localhost", port 8080, the following URL
should be used:

http://localhost:8080/teraxml/TextAnalyzer.jsp?file=c:\input.txt&lang=enNE=y&SB=y&POS=y&NP=y

This URL specified the following input parameters:

1. file=filename Name of text file to be processed. This file must contain text only and
must be an absolute filename. MS Windows note: Its default configuration, TeraXML
runs as a service on MS Windows and services are not allowed to access network shares
without setting special permissions allowing the server computer access to network
resources.

2. lang=en Language code that specifies the language of the input file. English is
specified by the code "en". For a complete list, see section 9.

3. NE=y Return Named Entities with their types.

4. SB=y Return sentences in the input text file.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://localhost:8080/teraxml/ProcessLocalTextFile?file=input.txt&lang=enNE=y&SB=y&POS=y&NP=y

TeraXML 6.0 Programmer’s Guide Page 38

5. POS=y Return Part-of-Speech tags in the input text file.

6. NP=y Return Base Noun Phrases detected in the input text file.

For example, to process the file c:\file1.txt and return POS tags, Sentences, Noun Phrases and
Named Entities submit the URL:

http://localhost:8080/teraxml/TextAnalyzer.jsp?file=c:\file1.txt&lang=en&POS=y&SB=y&NP=y&NE=y

The server will return XML data encoded in UTF-8 with the mime-type "text/xml". This XML
data can be processed by the caller to iterate over the requested information (POS tag, Sentences,
Base noun phrase or Entities).

6.1.2 Response Format – Output XML

The XML returned by the TeraXML server conforms to the following DTD:

<!DOCTYPE response [
 <!ELEMENT response (NE|NP|SB|POS|error)>
 <!ELEMENT NE (entity+)>
 <!ELEMENT NP (phrase+)>
 <!ELEMENT SB (sentence+)>
 <!ELEMENT POS (token+)>
 <!ELEMENT entity (#PCDATA)>
 <!ATTLIST entity type CDATA #REQUIRED>
 <!ELEMENT phrase (#PCDATA)>
 <!ELEMENT sentence (#PCDATA)>
 <!ELEMENT token (#PCDATA)>
 <!ATTLIST token type CDATA #REQUIRED>
 <!ELEMENT error (#PCDATA)>
]>

The following is an example of the XML file returned by the server, assuming that all items
(Entities, Base noun phrases, Sentences and POS tags) were requested.

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <NE>
 <entity type="PERSON">George Bush</entity>
 <entity type="LOCATION">White House</entity>
 <entity type="ORGANIZATION">Republican Party</entity>
 </NE>
 <NP>
 <phrase>George Bush</phrase>
 <phrase>the White House</phrase>
 <phrase>the Republic Party</phrase>
 </NP>
 <SB>
 <sentence>He lives in the White House .</sentence>
 <sentence>He is a member of the Republican Party</sentence>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://localhost:8080/teraxml/ProcessLocalTextFile?file=c:\ my-text-file.txt&POS=y&SB=y&NP=y&NE=y

TeraXML 6.0 Programmer’s Guide Page 39

 </SB>
 <POS>
 <token type="PRP">He</token>
 <token type="NNS">lives</token>
 <token type="IN">in</token>
 <token type="DT">the</token>
 <token type="NNP">White</token>
 <token type="NNP">House</token> </POS>
</response>

6.2 Error Handling

In case an error occurs during processing of the specified input file, the following XML will be
returned to the client:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <error>
 Specified file c:\mydata\my-text-file.txt does not exist.
 </error>
</response>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 40

7. TeraXML Search and Retrieval API

TeraXML offers a pure Java API to enable easy integration and allow TeraXML to be embedded
into a java web or desktop application. Documentation for the Java API is available in the
standard "javadoc" format and is provided separately from this document.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 41

8. TeraXML XML over HTTP API

TeraXML includes two modules that expose an XML over HTTP API. Search functionality is
exposed by the TeraXML SearchAgent. Indexing functionality is exposed by the TeraXML
IndexAgent.

The XML over HTTP API uses URIs with specific name/value pairs to invoke search or
indexing requests in the TeraXML server. The URI is the primary method used for message
passing. Once the URI is processed, a well-formatted XML document is returned as a response.

XML over HTTP has several advantages over conventional APIs.

1. It is a widely accepted methodology enabling most developers to create applications
quickly.

2. XML parsing tools are widely available in most development environments.

3. It offers cross platform compatibility and does not restrict the TeraXML server to specific
platforms. For example, this API can be used in a Microsoft .NET environment to
communicate with TeraXML server running on an IBM minicomputer.

4. It allows server side distributed processing and load balancing in manner completely
transparent to the client process.

5. It enables process safety and independence. A client process that crashes will not crash
the TeraXML server.

6. The http protocol works through most corporate firewalls.

7. Debugging and troubleshooting are simplified by logging all requests and responses to a
text file.

All examples in this document assume that the TeraXML server is running on a machine havimg
the hostname "myserver" on port 8080.

If the TeraXML server is running on the same machine as the client application making requests
to the SearchAgent or the IndexAgent the hostname "localhost" or the IP address "127.0.0.1"
may be used. Even in such situations, it is highly recommended that the machine’s actual
hostname be used. This is because "localhost" or "127.0.0.1" may fail if the Internet settings are
configured to use an HTTP Proxy server and "localhost" hostname or "127.0.0.1" IP address is
forwarded to the HTTP Proxy server.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 42

8.1 Using the SearchAgent API in XML Mode

In XML mode the SearchAgent accepts all input parameters in the form of a well-formed XML
parameter block. This XML parameter block is passed to the server as follows:

http://myserver:8080/teraxml/SearchAgent.jsp?xml=XML-parameter-block

The actual format of the XML parameter block depends on the command being sent to the
server. Available commands and their associated XML parameter blocks are as described below.

Please note that the data types referred to in the following tables are as follows:

[String] = A valid XML string value.

[Integer] = A valid integer value.

[Boolean] = A True or False value. True values may be specified by either "yes",
"1", "true" or "t". False values may be specified as "no", "0", "false"
or "f".

[Float] = A floating-point numeric value.

[Catalog] = A Catalog name as shown in the TeraXML Management Application,
or a Catalog Identifier as shown in the response of the "Show"
command. A Catalog Identifier is the name of that catalog's directory
name in the TeraXML Server's "catalogs" directory. Typically this
directory is located at "[TeraXML-install-root]/catalogs".

[Word] = A single word.

[Word List] = A comma separated list of words.

8.1.1 Status Command

This command returns the current status of the TeraXML SearchAgent.

Request

<status showMemory="[Boolean]" doGC="[Boolean]"/>

Notes:
1. A showMemory value of true will show the memory free and total memory size of the JVM

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://myserver:8080/teraxml/SearchAgent.jsp?xml=XML-parameter-block

TeraXML 6.0 Programmer’s Guide Page 43

2. A doGC vale of true will perform Garbage Collection (GC) and will show memory before
and after the GC.

Response

<response request="status"
 catalogHandles="[Integer]"
 searchHandles="[Integer]"
 b4GCmemoryFree="[Integer]"
 b4GCmemoryTotal="[Integer]"
 memoryFree="[Integer]"
 memoryTotal="[Integer]" (see section 8.1.10)>
 <catalogHandle name="[HandleName]">
 <catalog>[Catalog name]</catalog>
 </catalogHandle>
 <searchHandle name="[HandleName]">
 <catalog>[Catalog name]</catalog>
 <query>[Query]</query>
 </searchHandle>
</response>

8.1.2 Show Command

This command lists all available TeraXML catalogs and their respective status.

Request

<show catalogId="[Catalog]" verbose="[Boolean]" />

Notes:
1. A CatalogId value of "*" will show all available catalogs.
2. A verbose value of true will show all queries associated with this catalog.

Response

<response request="show" count="[Integer]" (see section 8.1.10)>
 <agentCatalog catalogId="[Catalog]"
 name="[String]"
 version="[Integer]"
 state="[String]"
 caching="[Boolean]"
 autoStart="[Boolean]"
 indexAltTitle="[Boolean]"
 documents="[Integer]" />
 <agentCatalog … />
 <activeQuery catalogId="[Catalog]"
 query="[String]"
 elapsedTime="hh:mm:ss" />

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 44

 </agentcatalog>
 <agentCatalog …/>
</response>

Or,

<response request="show" msg="[String]" (see section 8.1.10) />

8.1.3 Start Command

This command marks a TeraXML catalog to be available for searching. Once a catalog is
"started", it will process search commands. A TeraXML catalog must be "started" before any
other catalog level SearchAgent operations on it can be performed.

Request

<start catalogId="[Catalog]" />

Response

<response request="start" count="[Integer]" (see section 8.1.10)>
 <agentCatalog catalogId="[Catalog]"
 name="[String]"
 version="[Integer]"
 state="started"
 caching="[Boolean]"
 autoStart="[Boolean]"
 indexAltTitle="[Boolean]"
 documents="[Integer]" />
</response>

Or,

<response request="start" msg="[String]" (see section 8.1.10)/>

Notes:
1. A CatalogId value of "*" will start all available catalogs.

8.1.4 Stop Command

This command sets the state of a TeraXML catalog such that it will not process any more search
queries.

Request

<stop catalogId="[Catalog]" />

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 45

Response

<response request="stop" count="[Integer]" (see section 8.1.10)>
 <agentCatalog catalogId="[Catalog]"
 name="[String]"
 version="[Integer]"
 state="stopped"
 caching="[Boolean]"
 autoStart="[Boolean]"
 indexAltTitle="[Boolean]"
 documents="[Integer]" />
 </response>

Or,

<response request="stop" msg="[String]" (see section 8.1.10)/>

Notes:
1. A catalogId value of "*" will stop all available catalogs.

8.1.5 Search Command

This command performs a search query and returns search results.

Request

<search catalogId="[Catalog]">
 <query page="[Integer]"
 pageSize="[Integer]"
 resultSort="[String]"
 relevancyWeighting="[String]"
 fuzzy="[Boolean]"
 plural="[Boolean]"
 stem="[Boolean]"
 test="[Boolean]">
 query text
 </query>
 <resultFields>[Comma-separated list of strings]</resultFields>
</search>

Notes:
1. A pageSize of "-1" will return all the results for the given query.
2. Predefined values for resultFields are:

"file", "url", "title", "altTitle", "fileType", "accessTime", "creationTime", "writeTime", "docId", "hitCount",
"abstract", "encoding", "relevancy", "composite", "compositeOffset", "compositeLength", "additionalText",
"catalogDocumentId" and "excerpt:n1:n2".

3. For the "excerpt:n1:n2" field, "n1" and "n2" are numbers that specify the number of words before (n1) and after
(n2) the search term that should be included in the excerpt.

4. User specified meta-data names are valid resultFields values.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 46

5. Predefined values for resultSort are "@fileName", "@fileDate", "@fileSize", "@fileType", "@hitCount",
"@relevancy", and "@url". If no sort is specified then results are returned in natural order.

6. User specified meta-data names are valid resultSort values.
7. Predefined values for RelevancyWeighting are [TITLE]=#, [PROX]=#, and [EXACT]=#, where # is an integer

in the range 0..16
8. XPATH values for RelevancyWeighting are also allowed.

Response

<response request="search"
 catalogId="[Catalog]"
 catalogName="[Catalog]"
 version="[Integer]"
 documentsInCatalog="[Integer]"
 documentsInResultSet="[Integer]"
 hitsInResultSet="[Integer]"
 searchTime="[Float]"
 resultsTime="[Float]"
 page="[Integer]"
 pageSize="[Integer]"
 resultSort="[String]"
 relevancyWeighting="[String]"
 maxRelevancy="[Integer]"
 resultFields="[String]"
 fuzzy="[Boolean]"
 plural="[Boolean]"
 stem="[Boolean]"
 count="[Integer]"
 (see section 8.1.10)>
 <documentInfo>
 ...list of values from fields specified by the resultFields tag...
 </documentInfo>
</response>

Or,

<response request="search" msg="[String]" (see section 8.1.10)/>

8.1.6 Linguistics Command

This command performs a linguistic analysis of the supplied search word and returns possible
alternative search words.

Request

<linguistics catalogId="[Catalog]"
 word="[Word]"
 fuzzy="[Boolean]"

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 47

 plural="[Boolean]"
 stem="[Boolean]" />

Notes:
1. If fuzzy is true then return fuzzy terms related to word.
2. If plural is true then return plural terms related to word.
3. If stem is true then return stem terms related to word.

Response

<response request="linguistics" (see section 8.1.10)>
 <fuzzyWords>[Word List]</fuzzyWords>
 <pluralWords>[Word List]</pluralWords>
 <stemWords>[Word List]</stemWords>
</response>

Or,

<response request="linguistics" msg="[String]" (see section 8.1.10)/>

8.1.7 Suggestions Command

This command returns alternative words to a specified input word from words found the index.

Request

<suggestions catalogId="[Catalog]" word="[Word]" fuzzy="[Boolean]" />

Notes:
1. If fuzzy is true then return fuzzy terms related to word.

Response

<response request="suggestions" (see section 8.1.10)>
 <word count="[Integer]">[Word]</words>
</response>

Or,

<response request="suggestions" msg="[String]" (see section 8.1.10)/>

8.1.8 Properties Command

This command returns alternative words to a specified input word from words found the index.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 48

Request

<properties catalogId="[Catalog]" autoStart="[Boolean]" caching="[Boolean]" />

Response

<response request="properties" count="[Integer]" (see section 8.1.10)>
 <agentCatalog catalogId="[Catalog]"
 name="[String]"
 version="[Integer]"
 state="[String]"
 caching="[Boolean]"
 autoStart="[Boolean]"
 indexAltTitle="[Boolean]"
 documents="[Integer]" />
</response>

Or,

<response request="properties" msg="[String]" (see section 8.1.10)/>

8.1.9 CatalogItem Command

This command performs a search query and returns search results.

Request

<catalogItem catalogId="[Catalog]"
 docId="[Integer]"
 pageSize="[Integer]"
 resultFields="[Comma-separated list of strings]"
 test="[Boolean]" />

Notes:
1. Predefined values for resultFields are:

"file", "url", "title", "altTitle", "fileType", "accessTime", "creationTime", "writeTime", "docId", "hitCount",
"abstract", "encoding", "relevancy", "composite", "compositeOffset", "compositeLength", "additionalText",
"catalogDocumentId".

Response

<response request="catalogItem"
 catalogId="[Catalog]"
 catalogName="[Catalog]"
 version="[Integer]"
 docId="[Integer]"
 pageSize="[Integer]"
 resultFields="[String]"

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 49

 resultsTime="[Float]"
 documentsInCatalog="[Integer]"
 test="[Boolean]"
 count="[Integer]"
 (see section 8.1.10)>
 <documentInfo>
 ...list of values from fields specified by resultFields...
 </documentInfo>
</response>

Or,

<response request="catalogItem" msg="[String]" (see section 8.1.10)/>

8.1.10 Response attributes common to all commands

The following attributes are present in the response XML for all commands.

Response

<response request="…"
 requests="[Integer]"
 concurrent="[Integer]"
 maxConcurrent="[Integer]"
 concurrentSearches="[Integer]"
 maxConcurrentSearches="[Integer]"
</response>

Notes:
1. requests is the count of total requests processed by the TeraXML server
2. concurrent is the count of concurrent requests being processed at this instance in time by the TeraXML server.
3. maxConcurrent is the largest concurrent value since the TeraXML server was started.
4. concurentSearches is the count of concurrent search requests being processed at this instance in time by the

TeraXML server.
5. maxConcurrentSearches is the largest concurrentSearchs value since the TeraXML server was started.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 50

8.1.11 Using the SearchAgent API in Multiple Parameter mode

This mode allows you to specify all input parameters in the URL itself. The URL should be
formatted as follows:

http://myhost:8080/teraxml/SearchAgent.jsp?cmd=c=&q=&rf=&rs=&p=&ps=&v=

The meaning of each parameter is described below. For precise details, see section 2 where
XML the parameter block for each different command is described in detail.

Parameter Meaning

cmd Command - search, show, start, status, stop, linguistics, suggestions, properties or catalogItem.

C Catalog name or catalog id

Fz Fuzzy (Boolean)

Pl Plural (Boolean)

St Stem (Boolean)

Di Document Id (1 .. # of documents in Catalog)

Q Query string

Rf Result fields required for each search result item

Rs Result sort key(s)

P Page number requested

Ps Page size requested

wd Word

As Auto Start (Boolean)

Ca Caching (Boolean)

V Verbose (Boolean)

The data returned is the same XML format as described in section 2.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://myhost:8080/teraxml/SearchAgent.jsp?cmd=c=&q=&rf=&rs=&p=&ps=&v

TeraXML 6.0 Programmer’s Guide Page 51

8.2 IndexAgent API

The IndexAgent exposes an XML over HTTP API. This API allows the client to submit
Indexing Tasks that are executed in the TeraXML Server process. Certain IndexAgent API calls
are asynchronous – which means that a call starts an Indexing Task in a server thread and returns
immediately to the client an Event ID. The client then periodically checks the status of that
particular task using the returned event ID.

The IndexAgent accepts all input parameters in the form of an XML parameter block. This
XML parameter block is passed to the server as follows:

http://myserver:8080/teraxml/IndexingAgent.jsp?xml=XML-parameter-block

The actual format of the XML parameter block depends on the command being sent to the
server. Available commands and their associated XML parameter blocks are as described below.

8.2.1 Copy Catalog Command

This command allows the client to create a new catalog by copying an existing catalog.

Request

<copyCatalog fromCatalogId="[Catalog]"
 name="[String]"
 caching="[Boolean]"
 autoStart="[Boolean]"
 <description>
 [Text]
 </description>
</copyCatalog>

Note:
1. If the new name is an existing catalog, then, a new version will be created.

Response

<response request="copyCatalog"
 fromCatalogId="[Catalog]"
 cataloged="[Catalog]"
 catalogName="[String]"
 caching="[Boolean]"
 autoStart="[Boolean]"
 eventId="[String]"
 (see section 8.1.10)>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://myserver:8080/teraxml/IndexingAgent.jsp?xml=XML-parameter-block

TeraXML 6.0 Programmer’s Guide Page 52

 <description>[Text]</description>
</response>

Or

<response request="copyCatalog" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.2 Create Catalog Command

This command allows the client to create a new catalog.

Request

<createCatalog name="[String]"
 XSLfileName="[String]"
 initialSize="[Integer]"
 fuzzy="[Boolean]"
 stem="[Boolean]"
 caching="[Boolean]"
 autoStart="[Boolean]"
 indexAltTitle="[Boolean]"
 indexModDate="[Boolean]"
 indexURL="[Boolean]"
 keepXMLfromPDF="[Boolean]"
 autoReplicate="[Boolean]"
 keepVersions="[Integer]">
 <description>
 [Text]
 </description>
</createCatalog>

Notes:
1. If initialSize is 0 then TeraXML will choose an optimal initial size based on the first set of documents added to

the catalog.

Response

<response request="createCatalog"
 catalogId="[Catalog]"
 catalogName="[String]"
 version="[Integer]"
 initialSize="[Integer]"
 (see section 8.1.10)>
 <description>
 [Text]
 </description>
</response>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 53

or

<response request="createCatalog" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.3 Delete Catalog Command

This command allows the client to delete a catalog.

Request

<deleteCatalog catalogId="[Catalog]" />

Response

<response request="deleteCatalog" count="[Integer]" catalogId="[Catalog]" (see section 8.1.10)>

or

<response request="deleteCatalog" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.4 Database Command

This command allows the client to submit an indexing task which uses a JDBC connection to
retrieve data from a database for indexing.

This is an asynchronous call. The "eventId" attribute in the response specifies a TeraXML Event
that may be queried using the Status command.

For detailed explanation of each of the input parameters, please see the document "TeraXML
Database Indexer Module".

Request

<database catalogId="[Catalog]">
 <inputset>
 <database>[String]</database>
 <userId>[String]</userId>
 <password>[String]</password>
 <indexStatement>[String]</indexStatement>
 <displayStatement>[String]</displayStatement>
 <driver>[String]</driver>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 54

 <primaryKeyColumns>[String]</primaryKeyColumns>
 <titleColumns>[String]</titleColumns>
 <metaDataColumns>[String]</metaDataColumns>
 <indexColumns>[String]</indexColumns>
 </inputset>
</database>

Response

<response request="database"
 catalogId="[Catalog]"
 catalogName="[String]"
 eventId="[String]"
 (see section 8.1.10)/>

Or,

<response request="database" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.5 Spider Command

This command allows the client to submit an indexing task which spiders (crawls) a base URL,
downloads found URLs locally and subsequently indexes the downloaded files.

This is an asynchronous call. The "eventId" attribute in the response specifies a TeraXML Event
that may be queried using the Status command.

For detailed explanation of each of the input parameters, please see the document "TeraXML
Webcrawler Options".

Request

<spider catalogId="[Catalog]">
 <inputset>
 <url>[String] </url>
 <mapFile> [String]</mapFile>
 <outputPath>[String] </outputPath>
 <defaultEncoding>[String] </defaultEncoding>
 <maxDepth>[Integer] </maxDepth>
 <indexAfterCrawl>[Boolean] </indexAfterCrawl>
 <recursive>[Boolean] </recursive>
 <timeStamping>[Boolean] </timeStamping>
 <mirror>[Boolean] </mirror>
 <pageRequisites>[Boolean] </pageRequisites>
 <honorRobots>[Boolean] </honorRobots>
 <spanHosts>[Boolean] </spanHosts>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 55

 <parentAscending>[Boolean] </parentAscending>
 <metaData name="[String]">[String] </metaData>
 <tries>[Integer] </tries>
 <waitRetrySeconds>[Integer] </waitRetrySeconds>
 <waitSeconds>[Integer] </waitSeconds>
 <timeoutSeconds>[Integer] </timeoutSeconds>
 <randomWait>[Boolean] </randomWait>
 <continue>[Boolean] </continue>
 <userId>[String] </userId>
 <password>[String] </password>
 <userAgent>[String] </userAgent>
 <setHTMLextension>[Boolean] </setHTMLextension>
 <acceptList>[String] </acceptList>
 <rejectList>[String] </rejectList>
 <domainList>[String] </domainList>
 <excludeDomainList>[String] </excludeDomainList>
 <followTags>[String] </followTags>
 <ignoreTags>[String] </ignoreTags>
 <includeDirectories>[String] </includeDirectories>
 <excludeDirectories>[String] </excludeDirectories>
 <XMLcompositXPaths>[String] </XMLcompositXPaths>
 <XMLtitleXPaths>[String] </XMLtitleXPaths>
 <XMLparagraphXPaths>[String] </XMLparagraphXPaths>
 <XMLintegerXPaths>[String] </XMLintegerXPaths>
 <XMLdateXPaths>[String] </XMLdateXPaths>
 <includeCDATA>[Boolean] </includeCDATA>
 <includeAttributes>[Boolean] </includeAttributes>
 </inputset>
</spider>

Notes:
1. When specifying metadata, you can specify a type by prefixing the metadata name with "i_" for integer and

"d_" for date. This will ensure that sorting by that metadata works correctly.

Response

<response request="spider"
 catalogId="[Catalog]"
 catalogName="[String]"
 eventId="[String]"
 (see section 8.1.10)/>

Or

<response request="spider" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 56

8.2.6 Delete Command

This command allows the client to delete specific Catalog Entries using a search query.

This is an asynchronous call. The "eventId" attribute in the response specifies a TeraXML Event
that may be queried using the Status command.

Request

<delete catalogId="[Catalog]">
 <query>[String]</query>
</delete>

Response

<response request="delete"
 catalogId="[Catalog]"
 catalogName="[String]"
 eventId="[String]" (see section 8.1.10)/>

Or

<response request="delete" (see section 8.1.10)>
 <errmsg></errmsg>
</response>

8.2.7 Merge Command

This command allows the client to start a Merge task. A Merge task should be performed on a
catalog periodically after several updates have been performed on that catalog. The Merge task
is responsible for merges the Primary and Update search Indexes into a single Primary Index and
physically deleting any catalog entries deleted by the Delete task.

This is an asynchronous call. The "eventId" attribute in the response specifies a TeraXML Event
that may be queried using the Status command.

For further information about Merging Catalogs please see the documents "TeraXML Enterprise
Search" and "TeraXML Programmer’s Guide".

Request

<merge catalogId="[Catalog]" />

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 57

Response

<response request="merge"
 catalogId="[Catalog]"
 catalogName="[String]"
 eventId="[String]"
 (see section 8.1.10)/>

Or

<response request="merge" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.8 Show Command

This command allows the client to show existing catalog information.

Request

<show catalogId="[String]"/>

Response

<response request="show" count="[Integer]" (see section 8.1.10)>
 <catalog catalogId="[String]"
 catalogName="[String]"
 version="[Integer]"
 documents="[Integer]"/>
</response>

Or

<response request="show" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.9 Status Command

This command allows the client to query the IndexAgent for a status of an Event. The eventId
attribute value must be a value that was returned from a Spider, Delete or Merge command.

A TeraXML IndexAgent Event consists of an InputSetList, which consists of one or more
InputSets. InputSets identify a Spider task.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 58

Request

<status eventId="[String]"/>

Response

<response request="status" eventId="[String]" (see section 8.1.10)>
 <runMode>[String]</runMode>
 <status>[String]</status>
 <extendedStatus>[String]</extendedStatus>
 <inputSetList id="[String]">
 <inputSet id="[String]">
 <url>[String]</url>
 <status>[String]</status>
 <extendedStatus>[String]</extendedStatus>
 </inputSet>
 </inputSetList>
</response>

Or

<response request="status" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.2.10 Version Command

This command returns the current version of the IndexAgent along with number of total and
concurrent requests.

Request

<version />

Response

<response request="version" version="[String]" (see section 8.1.10)/>

8.2.11 MapFile Command

This command allows the client to submit a previously downloaded website for indexing using a
Map File. Map Files are created by TeraXML’s Webcrawler during the web crawling process.
Websites may be downloaded but not indexed by setting the <indexAfterCrawl> option in the
<spider> command to false.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 59

Request

<mapFile catalogId="[Catalog]">
 <inputset>
 <mapFile>[String]</mapFile>
 <metaData name="[String]">[String]</metaData>
 </inputset>
</mapFile>

Notes:
1. When specifying metadata, you can specify a type by prefixing the metadata name with "i_" for integer and

"d_" for date. This will ensure that sorting by that metadata works correctly.

Response

<response request="mapFile"
 catalogId="[Catalog]"
 catalogName="[String]"
 eventId="[String]"
 (see section 8.1.10)/>

Or

<response request="mapFile" (see section 8.1.10)>
 <errmsg>[String]</errmsg>
</response>

8.3 Testing the SearchAgent and IndexAgent

The SearchAgent can be tested by using the following URL:

http://myserver:8080/teraxml/SearchAgent.htm

The IndexAgent can be tested by using the following URL:

http://myserver:8080/teraxml/IndexAgent.htm

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://myserver:8080/teraxml/SearchAgent.jsp?xml=XML-parameter-block
http://myserver:8080/teraxml/SearchAgent.jsp?xml=XML-parameter-block

TeraXML 6.0 Programmer’s Guide Page 60

9. TeraXML C API

9.1.1 DLL_API dpBuild (CHAR *path, DPAPI_PARMS *parms);

Description:

The dpBuild() functions provides all the steps for taking STF files and building an
inverted index search structure. The dpBuild module also recognizes and processes
field description information so information can be searched by type. The output is a
".dat" file that contains all the information required for do full-text and fielded
searches. There are several steps in the build process. An error code and the step
indicate where the problem occurred.

Parameters:

 CHAR *path - Full path expression pointing to input STF file.

 DPAPI_PARMS *parms - Pointer to structure containing input, output and
 error information for the build process.

 Component description (parms):

 All steps:

 BOOLEAN dpapi_intermediateFiles;

 If set, intermediate processing files are NOT erased. If FALSE,
 these files are automatically erased at the end of the last step.
 If an error is detected, the files are also preserved.

 CHAR *dpapi_templateFile;

 Pointer to the template for the .SYS DP control file. This file
 describes some additional parameters controlling the build process.
 Most of the parameter settings are determined by calculations
 during processing. These parameters should probably not require
 modification for XML search. This file is located in the
 catroot\ directory and is copied to the target catalog during
 the build process.

 Dbuild Step:

 UINT32 dbuild_memSize;

 Memory allocation size for dictionary build step. This should
 use as close to the physical machine size as possible. The DEFAULT
 is 1/2 of physical machine size. On current machines, this is now
 typically sufficient to limit the number of passes over the source to
 a single pass. (e.g 256MB+). A value of 0 indicates to use the
 default memory size calculation.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 61

 UINT16 dbuild_contextAaidx;

 The attribute array index to use for the context search information.
 The range is 8..15. If 0, then no context search data structures
 are built.

 UINT16 *dbuild_contextMap;

 An array of integers usually built by the catalog context routines.
 This map established the correct hierarchical values for
 performing context search. This parameter should be NULL
 for non-context builds. Additionally, since the catalog
 routines build this parameter, it should be NULL in that context
 as well.

 Invert Step:

 UINT32 invert_memSize;

 Memory allocation size for the inversion build step. This should
 use as close to the physical machine size as possible. The DEFAULT
 is 1/2 of physical machine size. A value of 0 indicates to use the
 default memory size calculation.

 INT32 invert_pct;

 Number between 1 and 99 indicating the percentage of memory to use
 for the dictionary during inversion. If 0, the default of 33%
 is used. This can be increased in cases where an unusually large
 number of unique words occur.

 UINT16 invert_contextAaidx;
 UINT16 *invert_contextMap;

 See above information on dbuild analogs. Note that the dbuild and
 invert values should be the same.

 Reorg Step:

 UINT32 reorg_memSize;

 Memory allocation size for re-organization build step. If 0, the
 DEFAULT value of 640K is used.

 MkCDWeb (Make Web/CD Image) Step:

 CHAR *mk_outputPath;

 Output PATH to place temporary and result .DAT file.
 The .DAT file contains the complete set of data structures
 built for the search routines (except for the separate, optional
 context data structures).

 UINT32 mk_memSize;

 MkCDWeb memory allocation size. If 0, a DEFAULT value of 1/2
 physical memory size is used.

 CHAR *mk_fileSelect;

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 62

 A string denoting the sub-file components that comprise
 the .DAT file that is created. This value should always
 be set to NULL by applications.

 INT32 mk_sequence;

 DAT file sequence (multi-volume) -- Ignored (set to 0).

 CHAR *mk_databaseId;

 Database Id. If set to NULL, uses time stamp. Default is suggested
 value.

 CHAR *mk_key;

 Encryption key string to use for encoding database contents. If NULL,
 no encryption is used.

 CHAR *mk_copyright;

 Name of the copyright file containing the vendor copyright
 information. This file defaults to the catroot/ file copyrght.dat
 if this parameter is NULL.

 CHAR *mk_cdMapString;

 Size of 1st 3 .DAT sub-files. Do NOT set unless these files
 sizes are changed. Use value of NULL.

 INT32 mk_bWeb;

 Missing sub-files are NOT error. This MUST be set to a non-zero
 value.

 Return Data:

 UINT8 dpapi_phase;

 Step that failed if an error occurred. The values returned are
 defined in dpapi.h under the "Dataprep Build step indicators"
 heading. If no error occurs, then this is 0.

 int dpapi_error;

 Returns one of the "DataPrep Return codes" in dpapi.h (if < 0).
 If positive, then the error is a build-step specific problem.

Input/Output Files:

 Input:

 STF input file -- Parameter "path"
 copyrght.dat -- Specified in component mk_copyright of parameter
 "parms".
 template.sys -- Default build control configuration file.

 Intermediate Files:

 "*.db2", "*.dbo", "*.ddp", "*.ddq", "*.ddr", "*.dlp", "*.ino"

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 63

 Where "*" is the base name of the output file.

 Output files:

 "*.dat" -- Output of build process. Path and name
 is the base name defined by mk_outputPath
 with the ".DAT" extension (unless the output
 name uses and extension).
 template.sys -- Updated .sys file copied from source defined
 in parms component to output directory specified
 by mk_outputPath.

Returns:
 INT 0 -- Successful merge (DPAPI_SUCCESS)
 -1 -- ERROR (DPAPI_ERROR)

9.1.2 DLL_API dpHtml2Stf (CHAR *path, SRC2STF_PARMS *parms);

Description:

The dpHtml2Stf() function provides access to the built-in HTML/XML
parser to convert HTML or XML files to STF. Parsing only looks for
words and limited structure items for HTML. For XML, tag/attribute
information is handled by a separate context process found with the
catalog functions.

All parsing parameters are defined. Note that the same structure is used
by the generic parser. The generic parser ignore all the HTML/XML
specific items (the ones starting with "ht_").

Parameters:

 CHAR *path - Full path expression pointing to input HTML file.

 DPAPI_PARMS *parms - Pointer to structure containing input, output and
 error information for the conversion process.

 Component description (parms):

 Input parameters:

 CHAR *sr_outputFile; \

 Output path for the resulting .STF file. Must not be NULL.

 CHAR *sr_logFile;

 Log path file. If NULL, log information to stdout. If "", then NO
 logging information is reported.

 CHAR *sr_context;

 Context idx file for XML parsing. This is set/managed by internal
 catalog management routines. Users do not set this parameter.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 64

 (i.e. set to NULL).

 CHAR *sr_contextStr;

 Context string file for XML parsing. This is set/managed by internal
 catalog management routines. Users do not set this parameter.
 (i.e. set to NULL).

 UINT8 sr_flags; // SR_FLAGS (filter options)

 Eight flags for controlling filter/parser behavior. Currently, the
 following options (see dpapi.h) are defined:

 SR_INCLUDEDOCTYPE -- Include document type in document under DRI 2.
 Document type values are defined in the
 sccfi.h file. HTML and XML file types (using
 the HTML/XML filter) are SR_HTML and SR_XML.

 UINT8 sr_contextAaidx; // Context aaidx

 The aaidx value to use for context information. 0 implies no context
 processing. This is for the generic filter only. Either this or
 the following parameter can be non-zero (i.e. not both).

 UINT8 sr_genericAaidx; // Generic Filter tag aaidx

 The aaidx value to use for generic filter tag information. If non-zero,
 then the context aaidx should be zero. This parameter is ignored for
 HTML/XML parsing.

 Values for the tags can be found in the sccca.h file.

 BOOLEAN sr_appendToOutput;

 If set, then append the output to file specified in sr_outputPath,
 create the file if it does not exist. If not set, then output file is
 created/overwritten.

 BOOLEAN sr_includePunctuation;

 Place punctuation characters in output STF. This should usually
 be FALSE.

 BOOLEAN sr_debug;

 Turn on debug info output

 BOOLEAN sr_enableJapanese;

 Enable recognition of Japanese words. This is off by default.

 INT32 sr_maxWordChars;

 Maximum length of a word. The largest value permissible is 128.
 If set to 0, then the value defaults to 64.

 CHAR *sr_regExpression;

 If not NULL, then a string in EGREP format is used as a regular
 expression to determine word-break rules. If NULL, then the standard

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 65

 word break of letters followed by letters/digits is used.

 INT sr_foldSettings;

 Control bits for case folding.

 FOLD_DIGIT 0x4000 - Fold all numeric characters to base set
 FOLD_LATIN 0x8000 - Fold all Latin equivalents to A..Z

 Components for HTML/XML Conversion ONLY

 UINT8 ht_contextAaidx;

 Context aaidx value to used for HTML/XML parsing.

 BOOLEAN ht_continueOnFileError;

 If set, continue parsing even if an error is detected.

 BOOLEAN ht_includeAttributes;

 If set, include attribute data in token output. This must be set for
 XML filtering.

 BOOLEAN ht_warnUnknown;

 Warn if an unknown HTML tag is found. Set to FALSE for XML
 parsing.

 BOOLEAN ht_inputIsListOfFiles;

 Allows input file path to specify a list of files. This value must
 be FALSE when used in the catalog routines.

 UINT32 ht_docIdStart;

 Id value used to uniquely identify document -- NOT USED.

 CHAR *ht_defFile;

 File that defines tag used for HTML/XML parsing and whether these
 tags define a new paragraph.

 CHAR *ht_titleBuffer;
 INT ht_titleBufferSize;

 Buffer for title. Set by calling application. Can be NULL.
 If not NULL, then the size of the buffer must be set in
 ht_titleBufferSize.

 UINT32 ht_documentsProcessed;

 Number of documents processed. For the catalog routines, this must
 always be 1.

 Return Data:

 int dpapi_error;

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 66

 Returns one of the "DataPrep Return codes" defined in dpapi.h.
 This value is less than DPAPI_ERROR.

Input/Output Files:

 Input:

 HTML/XML input file -- Parameter "path"

 Output file:

 STF token file -- Output of conversion process. File path name
 specified by sr_outputPath.

Returns:
 INT 0 -- Successful conversion (DPAPI_SUCCESS)
 -1 -- ERROR (DPAPI_ERROR)

9.1.3 DLL_API dpMerge (CHAR *path, MERGE_PARMS *parms);

Description:

Merges two .DAT files into a single .DAT file. It is more
efficient to search a single database as the files grow larger.

Parameters:

 CHAR *path - Full path expression pointing to output HTML .DAT
 file. This file will be overwritten. The file
 can be the same name as one of the input files.

 DPAPI_PARMS *parms - Pointer to structure containing input, output and
 error information for the conversion process.

 Component description (parms):

 Merge Step:

 CHAR *mg_prm;

 File path name of primary input .DAT file. This should be the larger
 or "base" database file. This parameter must not be NULL.

 CHAR *mg_upd;

 File path name of secondary input .DAT file. This should be the
 smaller or "update" database file. This parameter can be NULL
 for the case where documents are being deleted from primary (i.e.
 no documents are being added).

 CHAR *mg_logFile;

 Log path file. If NULL, log information to stdout. If "", then NO
 logging information is reported.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 67

 CHAR *mg_sysFile;

 Pointer to the .SYS DP control file. This file describes
 some additional parameters controlling the build/merge process.
 Most of the parameter settings are determined by calculations
 during processing. These parameters should probably not require
 modification for XML search. This file is located in the catroot
 directory and is copied to the target catalog during the build
 process.

 BOOLEAN mg_debug;

 If set, turn on debug info output.

 UINT32 mg_mem;

 Memory allocation size for the merge step. This should use
 as close to the physical machine size as possible. The DEFAULT
 is 1/2 of physical machine size.

 INT mg_mode;

 Merge control settings. These merge settings can control the
 efficiency of merge and adjust/remove data for deletions.
 These are bit options.

 MINCALC_LOCS: If bit set, then locator size is recalculated
 to minimal size in case of deletions.

 ADJUST_LOCS: When documents are deleted, document #'s for
 subsequent documents are adjusted to account
 for the removed items.

 BIGINT *mg_delList;

 List of deleted documents. These document words/locators are
 removed from the .DAT file. Subsequent documents are adjusted
 if the ADJUST_LOCS bit is set.

 UINT16 *mg_locMap;

 Pointer to mapping array that maps context indexes to new values
 calculated from merging the context tree files.

 UINT16 mg_contextAaidx;

 Specifies the context aaidx for the above context mapping
 functionality.

 All steps:

 BOOLEAN dpapi_intermediateFiles;

 If set, remove intermediate files after merge completes.

 Reorg Step:

 UINT32 reorg_memSize;

 Same as definition above for dpBuild.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 68

 MkCDWeb Step:

 CHAR *mk_outputPath;
 UINT32 mk_memSize;
 CHAR *mk_fileSelect;
 INT32 mk_sequence;
 CHAR *mk_databaseId;
 CHAR *mk_key;
 CHAR *mk_copyright;
 CHAR *mk_cdMapString;
 INT32 mk_bWeb;

 Same as definitions above for dpBuild.

 Return Data:

 BIGINT dpapi_docCount;

 Number of documents in collection. (should be 1 for catalog routines)

 UINT8 dpapi_phase;

 Step where merge failed if error occurs. The values returned are
 defined in dpapi.h under the "Dataprep Build step indicators"
 heading. If no error occurs, then this is 0.

 int dpapi_error;

 Returns one of the "DataPrep Return codes" in dpapi.h (if < 0).
 If positive, then the error is a build-step specific problem.

Input/Output Files:

 Input:
 mg_prm (parm): Input file path of primary .DAT file.
 mg_upd (parm): Input file path of secondary .DAT file.
 May be NULL when only deletions are required.

 Output:

 Parameter "path": Output path of result merged .DAT file.

Returns:
 INT 0 -- Successful merge (DPAPI_SUCCESS)
 -1 -- ERROR (DPAPI_ERROR)

9.1.4 DLL_API catCreate(CHAR *root, CHAR *path, CHAR *name, FIELDS *extra,
 UINT32 hashSize, CAT_HANDLE *handle);

Description:

Catalogs are created in a catalog "area". The area is a directory that can

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 69

be populated by one or catalogs. Each catalog is a self-contained sub-
directory containing all information to build, maintain, and search a
a database of text files. The catCreate() function creates a catalog
under the named catalog area. Once created, the name is reserved and
can only be opened unless the entire sub-directory is removed.

If the creation process is successful, then a handle is return to be used for
all subsequent catalog function calls. A value less than 0, indicates
an error. Some or all of the sub-directory structures may be created.
It is advisable to delete the entire sub-directory in an error occurs.

Parameters:

 CHAR *root: This is the full path name of the directory containing
 the build files required to build and search a
 database. This parameter must be specified and can not
 be NULL.

 CHAR *path: The full path name of the catalog area. The catalog
 will be created in a subdirectory under this "area"
 with the name specified in the parameter list.
 This parameter can NOT be NULL.

 CHAR *name: Name of the catalog. Must be a valid directory
 name. The subdirectory must not already exist.
 This parameter can NOT be NULL.

 FIELDS *extra: A pointer to an integer array specifying additional
 fields in the catalog entry item. This allows users
 an extension mechanism for adding additional data
 in the future. Usually set to NULL for standard
 configuration.

 UINT32 hashSize: Initial size of the hash table for fast lookup.
 May be set to 0. If 0, then the hash table is not
 created until after catAddFile has been used to
 add files or other routines requiring access
 to the hash table are called. The user can also
 call the catMakeHashLookup() routine at anytime
 in order to build or re-build the hash table.

 CAT_HANDLE *handle:
 Pointer to location to save handle value. The
 application does not have access to the contents of
 the handle. The handle must be closed by the
 application. When the dataprep DLL exists, any open
 handles will automatically be closed. This
 parameter must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 70

9.1.5 DLL_API catOpen(CHAR *path, CHAR *name, INT mode, CAT_HANDLE *handle);

Description:

Opens an already existing catalog for further processing or searching.
The catalog must exist and been created and properly closed. The handle
allows access to existing data with subsequent catalog functions.
When done using the handle, the catClose() function should be called to
conclude usage.

Parameters:

 CHAR *path: The full path name of the catalog area.
 This parameter can NOT be NULL.

 CHAR *name: Name of the catalog. The catalog must already
 exist. This parameter can NOT be NULL.

 INT mode: CAT_READONLY: Read-only access to catalog
 Several handles can be open in shared
 mode.
 CAT_OPENUPDATE:
 Catalog opened for update. Data
 structures can be changed.

 CAT_HANDLE *handle:
 Pointer to location to save handle value. The
 application does not have access to the contents of
 the handle. The handle must be closed by the
 application. When the dataprep DLL exists, any open
 handles will automatically be closed. This
 parameter must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog open successfully.

9.1.6 DLL_API catClose(CAT_HANDLE handle);

Description:

Closes a valid catalog handle returned by either catCreate() or catOpen().
No more operation may then be performed with the handle. All catalog
files are closed.

Parameters:

 CAT_HANDLE handle:
 Handle object from catCreate() or catOpen(). Must not
 be NULL or changed from open call. Handle is checked
 for integrity.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 71

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog closed successfully.

9.1.7 DLL_API catDelItem(CAT_HANDLE cat, BIGINT docId, BOOLEAN entireArchive);

Description:

Deletes the specified document entry from the catalog. The entry number is
from one to N (the number of entries -- see catEntryCount(). When catUpdate
is run, all entries deleted will be removed. No searches will then be
able to find information from removed documents.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

 BOOLEAN entireArchive:
 If set and the entry being removed is an archive file,
 then all subsequent entries associated with the archive
 are also removed.
Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Entry docId removed successfully.

9.1.8 DLL_API catDelFile(CAT_HANDLE cat, CHAR *file);

Description:

Deletes the specified document entry from the catalog. The file name with
path must match the entry in the catalog. If the file is not found,
then a CAT_NOTFOUND error is returned. For archive files, the name must
match the name of the archive file (without archive component name addition).
All components of an archive are removed.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 CHAR *file: Filename to match against name stored in catalog
 entry list. Must not be NULL.

 BOOLEAN entireArchive:
 If set and the entry being removed is an archive file,
 then all subsequent entries associated with the archive
 are also removed.
Returns:

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 72

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Entry indicated by filename removed successfully.

9.1.9 DLL_API catAddFile(CAT_HANDLE cat, CHAR *source, CHAR **props, INT mode, INT filter);

Description:

Adds one or more files to catalog entry list. All files are filtered
and converted to STF at this time. If a file is not found or a
parser error occurs, the call fails and nothing is added.
Note that the data in the files is not searchable until a catUpdate()
call has been processed.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 CHAR *source: Specifies a file or directory based upon mode.
 Must not be NULL.

 CHAR **props; Optional property list table. If NULL, no property lists are

applied to the files. Each property is a two-value object string
with the values separated by a tab (‘\t’) character. The catalog
must have context enabled and each property name is a single tag
name (like a GID for XML). The property value can be a multiple
word text fragment. E.g.,

 "Proper Name\tSteve J. Schmitt"

 The property value content is then searchable as part of the given

document(s) using the property name:

 Query: schmitt in tag "*Properties/Proper Name"

 INT mode: Specifies type of file reference given by source:

 ADD_MODE_FILE: Single file path name. Can be directory.
 ADD_MODE_LOF: Source points to a list of files. All
 entries in text file will be opened.
 One line corresponds to one file name.
 An entry can be a directory reference.
 ADD_MODE_DIR: Source is a directory or a directory
 with a wildcard descriptor (e.g.
 c:\myDocuments*.doc).

ADD_MODE_MAPFILE:
 Source parameter is a map file. A map file is a

CSV list used primarily as web-crawler input
specification. Each line corresponds to 1 file
entry.
Line format: URL,path,title,mimetype,encoding

 ADD_MODE_MODIFIED:
 If file(s) exist in catalog and have been

changed, delete entry and add new version. If
new, just ad as normal. Can be combined with 1st

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 73

 4 mode settings.
 ADD_MODE_AUTODEL:

If file(s) exist in catalog, then delete entry and
add again (no DUPLICATE ERROR). Can be combined
with 1st 4 mode settings

 INT filter: Specifies what filter to using for converting to
 STF.

 NO_FILTER: Assume file is STF format
 HTML_FILTER: Use custom HTML filter
 XML_FILTER: Scan for XML tags/attributes and build
 context tree.
 GENERIC_FILTER: Use generic filter (type if determined
 by filter)
 DETECT_FILTER: Detect file type and use either
 generic, HTML or XML filter as determined
 by file content).

If the Generic filter (or detect filter selects the generic filter) is
specified and the SRC2STF_PARMS parameter sr_contextAaidx is non-zero, then the
following generic tags may be available from an arbitrary document type. These
contextual tags are used in a fashion similar to XML generic tags.

DOC COMMENT KEYWORD LAST SAVED BY
PRIMARY AUTHOR SUBJECT TITLE
ABSTRACT ACCOUNT ADDRESS
ATTACHMENTS AUTHORIZATION BACKUP DATE
BILL TO BLIND COPY CARBON COPY
CATEGORY CHECKED BY CLIENT
COMPLETED DATE COUNT CHARS COUNT PAGES
COUNT WORDS CREATION DATE DEPARTMENT
DESTINATION DISPOSITION DIVISION
EDIT MINUTES EDITOR FORWARD TO
GROUP LANGUAGE LAST PRINT DATE
MAIL STOP MATTER OFFICE
OPERATOR OWNER PROJECT
PUBLISHER PURPOSE RECEIVED FROM
RECORDED BY RECORDED DATE REFERENCE
REVISION DATE REVISION NOTES REVISIONNUMBER
SECONDARY AUTHOR SECTION SECURITY
SOURCE STATUS DOC TYPE
TYPIST VERSION DATE VERSION NOTES
VERSION NUMBER BASE FILE LOCATION MANAGER
COMPANY USER DEFINED PROP

�

 For example, if the property "ABSTRACT" is defined for a generic

document (e.g., MS Word or PDF file), then the following query can be
used in a search:

�

 Query: "important data" in tag "ABSTRACT"

 "crime" in tag "TITLE"

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 74

 = 0: Possible error, no files added.
 > 0: Number of files successfully added.

9.1.10 DLL_API catEntryCount(CAT_HANDLE cat);

Description:

Returns the number of entries in the specified catalog. There is one
entry for each docId.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 >= 0: Number of entries in catalog. 0 implies not entries
 exist.

9.1.11 DLL_API catEntrySize(CAT_HANDLE cat, BIGINT docId);

Description:

Returns the size (in bytes) of a catalog entry record. This enables
application to allocate sufficient memory to hold a selected record.
The catGetEntry() routines requires a buffer of sufficient size to
hold an entry. The size will vary per entry due to the variable length of
file names, titles, and auxiliary information.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 >= 0: Bytes required for to hold entry record.

9.1.12 DLL_API catEntryStringSize(CAT_HANDLE cat, BIGINT docId, INT item);

Description:

Returns the number of bytes required for the string specified by item
from the docId entry record. The length includes space for the terminating

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 75

'\0';

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

 INT item: CAT_FILESTR: Selects the file name variable length item.
 CAT_AUXSTR: Selects the auxiliary variable length item.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 >= 0: Bytes required for selected string (including '\0')

9.1.13 DLL_API catGetEntry(CAT_HANDLE cat, BIGINT docId, BYTE *buffer, INT bSize);

Description:

Returns the entire entry record, including the variable length string
data as a record that can be accessed using the structure definition CAT_ITEM
found in dpapi.h. The variable length data is appended to the end of the
structure.

e.g. cPtr = (CAT_ITEM *) buffer; // Where buffer is the parameter above

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

 BYTE *buffer: Point to buffer of sufficient size to hold entry.
 (see catGetEntrySize()).

 INT bSize: Size of buffer (in bytes).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 >= 0: Actual size of record returned.

9.1.14 DLL_API catGetEntryString(CAT_HANDLE cat, BIGINT docId, INT item, CHAR *buffer,
 INT bSize);

Description:

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 76

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

 INT item: CAT_FILESTR: Selects the file name variable length item.
 CAT_AUXSTR: Selects the auxiliary variable length item.

 BYTE *buffer: Point to buffer of sufficient size to hold string item.
 (see catGetEntryStringSize()).

 INT bSize: Size of buffer (in bytes).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 >= 0: Actual length of string (as per strlen()).

9.1.15 DLL_API catUpdate(CAT_HANDLE cat, INT mode);

Description:

Performs a "build" or update of the current database set. After files
have been added or deleted, this function is called to allow searching
with this updated information. The mode controls some operations
performed during the update and whether to add to the primary or update
database (see mode parameter below).

An application can start with MODE_UPDATE 1st time. Since a primary does
not exist, it will be created. Then subsequent calls will build and add to
the secondary database. It is envisioned that a large primary will first be
created and then much smaller additions will be added to the update.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 INT mode: MODE_PRIMARY: Update the primary database
 MODE_UPDATE: Update to the secondary database

 One of the values above must be selected. You can
 optionally 'or' (|) any of the following BIT
 options to the mode parameter to control space
 usage and access:

 MODE_REMOVE_DELS: Remove deleted file docIds
 from .DAT file.
 MODE_COMPRESS_CAT: Remove deleted entries from
 catalog..
 MODE_REHASH: Rebuild hash lookup table at end of
 update.
 MODE_MIN_LOCSIZE: Minimize size of locators (resulting
 from deleted documents).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 77

 = 0: Catalog database successfully updated.

9.1.16 DLL_API catPrimaryMerge(CAT_HANDLE cat, INT mode);

Description:

Forces a merge of the primary and secondary databases resulting in a single
primary database. This should be run at the point where there are too many
entries in the secondary database (e.g. > 1000). After merge, not update
exists until a catUpdate() with MODE_UPDATE is executed.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 INT mode: MODE_PRIMARY: IMPLIED

 You can optionally set any of the following BIT
 options control space usage and access:

 MODE_REMOVE_DELS: Remove deleted file docIds
 from .DAT file.
 MODE_COMPRESS_CAT: Remove deleted entries from
 catalog..
 MODE_REHASH: Rebuild hash lookup table at end of
 update.
 MODE_MIN_LOCSIZE: Minimize size of locators (resulting
 from deleted documents).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Primary catalog database successfully updated.

9.1.17 DLL_API catMakeHashLookup(CAT_HANDLE cat, UINT8 pct);

Description:

Build or rebuilds the hash lookup data structure. The size of the
hash table is either re-used or recalculated depending on the pct
parameter. This is useful to call after an update with deletes
(and the MODE_REHASH option is not used) or after an number of files
have been added with the catAddFile() function.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 UINT8 pct: If 0, then the current hashsize is used.
 If between 1 and 100, then the hash table
 if that percentage of the number of entries in

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 78

 the catalog.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog hash table successfully built.

9.1.18 DLL_API catFindFile(CAT_HANDLE cat, CHAR *fileName, FIND_MODE mode,
 BIGINT *result);

Description:

Finds the catalog entry corresponding to the specified file name.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 CHAR *fileName: String file name to search. Must not be NULL.

 FIND_MODE bDel: FIND_ALL: find any name in catalog
 FIND_DEL: find only files that have been deleted
 FIND_NOTDEL: find only files that are NOT deleted

 BIGINT *result: Pointer to integer. Returns the docId of requested
 entry matching fileName. Must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Filename found.

9.1.19 DLL_API catSetLogging(CAT_HANDLE cat, CHAR *name, INT level);

Description:

Turns on logging of status/debug information to the specified file.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 CHAR *name: Name of file to send log information. If NULL,
 then output is sent to stdout. A "" string
 disables output.

 INT level: Severity level threshold. The application
 can restrict or expand the class of error and/or
 debugging messages produced by the library.

 DEBUG_LEVEL 3 -- Print all information

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 79

 WARN_LEVEL 2 -- Print only warnings and fatal messages.
 FATAL_LEVEL 1 -- Print only fatal messages
 NODEBUG 0 -- Do not print message.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog logging enabled.

9.1.20 DLL_API catEndLogging(CAT_HANDLE cat, BOOLEAN delFile);

Description:

Ends logging of build information.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BOOLEAN delFile:
 Deletes log file after it is closed.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog logging disabled.

9.1.21 DLL_API catSetParms(CAT_HANDLE cat, SRC2STF_PARMS *sPtr, DPAPI_PARMS *dPtr,
 MERGE_PARMS *mPtr);

Description:

Set the parameter block definitions for the catalog functions. The
structures are defined above. These override the following defaults
where allowed (some options can not be set by the application):

 SRC2STF_PARMS:

 Components that are invariant:

 sr_outputFile = // Set by catalog routines.
 sr_appendToOutput = TRUE;
 ht_inputIsListOfFiles = FALSE;
 sr_context = // Set by catalog routines.
 sr_contextStr = // Set by catalog routines.

 Default component settings:

 sr_flags = SR_INCLUDEDOCTYPE;

 if (filter & (IS_XML | IS_AUTOTYPE))

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 80

 ht_contextAaidx = DEFAULT_CONTEXT_AAIDX;

 if (filter & (IS_GENERIC | IS_AUTOTYPE))
 sr_genericAaidx = DEFAULT_GENERIC_AAIDX;

 if (catSetLogging() called)
 sr_logFile = log name;

 All other values are set to 0, FALSE, or NULL

 Definitions:

 sr_flag – bit field. Permitted values for the sr_flag field.

 SR_INCLUDEDOCTYPE - Include document type integer in DRI 2 of the
 parsed output (STF).
 SR_NOSPANSCRIPT - Include words found in javascript block.
 SR_XMLSTRICT - return parser error if XML file does not begin

 with <?xml?>.

 sr_stfFile - Location for STF output file (defaults to catalog DIR)
 sr_logFile - Conversion information log file (defaults to cat DIR)

 // Only ONE of the following two modes can be used (i.e. one must == 0)
 sr_contextAaidx - Context aaidx for context tags with generic filter
 sr_genericAaidx – aaidx for generic filter (no context tree)

 sr_appendToOutput - Append to output (else overwrite)
 sr_includePunctuation - Place punctuation tokens in STF
 sr_debug; - Turn on parser debug info output
 sr_enableJapanese; - ** deprecated.
 sr_maxWordChars - Maximum length of a word (255 max)
 sr_regExpression - Regular expression word break rule (C++ only)

 sr_foldSettings - Control bits for case folding

 FOLD_DIGIT - Fold all numerics to base ASCII numbers in lower 128
 FOLD_LATIN - Fold all accented characters to basic Latin representation.

 sr_includeWords; - Control bits for word inclusion

SR_INCLUDE_CDDATA - If bit set, include CDDATA words in parse.
SR_INCLUDE_COLL_HDR - If bit set, and processing XML composite

 file, include words from encapsulating
 header tag(s) for each composite file.

 sr_encoding - Text encoding to use (no auto detect)

 sr_altTitle - Alternate title
 sr_indexAltTitle - true if indexing alt title
 sr_addedText - Other added (non-indexed) text

 // Include/Exclude fmt: *.xml;foo.*;file.ext

 sr_includeList - File include wildcards
 sr_excludeList - File exclude list

 ht_contextAaidx - Context aaidx for XML parsing
 ht_stopOnFileError - If set, stop ADD if error encountered.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 81

 ht_includeAttributes - Output attribute name/attribute value data
 ht_warnUnknown - Warn about unknown GIDs (HTML only)
 ht_inputIsListOfFiles - ** deprecated
 ht_docIdStart - Starting doc ID (ATTR 8), none = 0
 ht_defFile - **deprecated
 ht_titleBuffer - Optional title buffer
 ht_titleBufferSize; - Size of above
 ht_documentsProcessed - ** deprecated (always 1)

 DPAPI_PARMS:

 Components that are invariant:

 mk_bWeb = 1;
 mk_outputPath = // Set by catalog routines.
 dbuild_contextMap = // Set by catalog routines.
 invert_contextMap = // Set by catalog routines.

 Default component settings:

 invert_pct = 33; // good value for default

 dbuild_contextAaidx:
 invert_contextAaidx:
 If above 0, then
 if the SRC2STF_PARMS are set, then uses ht_contextAaidx
 else uses DEFAULT_GENERIC_AAIDX

 All other values are set to 0, FALSE, and NULL

 MERGE_PARMS:

 Components that are invariant:

 mg_prm = // Set by catalog routines.
 mg_upd = // Set by catalog routines.
 mg_delList = // Set by catalog routines.
 mg_locMap = // Set by catalog routines.
 mk_bWeb = 1;

 Default component settings:

 mg_contextAaidx = DEFAULT_CONTEXT_AAIDX;

 All other values are set to 0, FALSE, and NULL

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 SRC2STF_PARMS *sPtr:
 Pointer to STF filter options. Can be NULL (use defaults).

 DPAPI_PARMS *dPtr:
 Pointer to database build options. Can be NULL (use
 defaults).

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 82

 MERGE_PARMS *mPtr:
 Pointer to database merge options. Can be NULL (use
 defaults).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.22 DLL_API catEntryStringUpdate(CAT_HANDLE cat, BIGINT docId, INT item, CHAR *su);

Description:

Function to change a variable string item in a catalog entry. The entry is
identified by the docId and which string is denoted with the item parameter.
It is most efficient to change the last item entered because this avoids any
potential compaction. There is a macro defined to simplify changing the
last filename string item:

 catLastEntryStringUpdateFile(cat, newStr)

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BIGINT docId: Document ID number. Number from 1 to the # of entries.

 INT item: CAT_FILESTR: Selects the file name variable length item.
 CAT_AUXSTR: Selects the auxiliary variable length item.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.23 DLL_API catSetFuzzyBuild(CAT_HANDLE cat, BOOLEAN set, INT32 size, INT maxCh);

Description:

Enable fuzzy operations for catalog. This function must be called to
enable building of fuzzy search structures. After the primary build,
fuzzy build can no longer be enabled. While fuzzy searching can later be
disabled, the value of performing that option is limited.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BOOLEAN set: Enable/disable building of catalog fuzzy structures.

 INT size: % of hash entry count to allocate for hash table.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 83

 0 indicates to use default. If creating the hash table,
 and # is > 100, then that is the absolute # of entries
 to use.

 INT maxCh: Maximum length of phonetic match. 0 implies the default
 which is to use all characters.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.24 DLL_API catSetStemBuild(CAT_HANDLE cat, BOOLEAN set, INT32 size);

Description:

Enable stemming operations for catalog. This function must be called to
enable building of stemming structures. After the primary build, stemming
can no longer be enabled. While stemming can later be disabled,
he value of performing that option is limited.

Parameters:

 CAT_HANDLE cat: Valid handle to opened catalog.

 BOOLEAN set: Enable/disable building of catalog stemming structures.

 INT size: % of hash entry count to allocate for hash table.
 0 indicates to use default. If creating the hash table,
 and # is > 100, then that is the absolute # of entries
 to use.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.25 DLL_API catSetXMLSemantics(CAT_HANDLE cat, INT action, CHAR *pathList);

Description:

Sets XML semantic actions for XML (and HTML with context). Actions include
the following semantics defined by "action" to apply to element tags
(or attributes): These settings apply as long as the catalog is open or
until cleared. All subsequent "added" files use these semantics.

Parameters:

CAT_HANDLE cat: Valid handle to opened catalog.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 84

 INT action:

 CLEAR_SEMANTICS: Remove all tag element semantics (reset).

 XML_EMPTY_TAG: Element has no end tag (HTML)
 XML_AUTO_END_TAG: Element is automatically ended when same tag
 is processed without intervening end tag (HTML).
 XML_TITLE_TAG: Element contains title information.
 XML_ABSTRACT_TAG: Element contains abstract information
 XML_PARA_TAG: Element is a new paragraph
 XML_INT_TAG: Element data are one or more 32-bit integers

 XML_REAL_TAG: Element data are 32-bit floating point #(s).

 These "bit" settings (except for CLEAR_SEMANTICS) can be or’d together.

 CHAR *pathList:

A string of one or more XML XPATHS separated by the "," character. Tag contents
represented by each XPATH have the type action applied.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.26 DLL_API addMap8(CAT_HANDLE cat, CHAR *mapName, UINT16 *table);

Description:

This function adds a 256-character UNICODE mapping table to the catalog in order to
translate byte character sets to their corresponding UNICODE equivalents. Note that
the mapping tables must be set each time a catalog is opened for update (i.e. they are
not retained in the catalog information file). The tables are ONLY required when
adding files that contain character codes outside the standard ASCII-7 character set.
For example, if an HTML file has the following meta tag:

<meta http-equiv="Content-Type" content="text/html; charset=windows-1256">

then this function should be called with "windows-1256" as the mapName and the proper
mapping table in a 256 item array of 16-bit codes. The codes should translate the byte
values in the added files to the proper UNICODE equivalents. Note that an error
condition is raised (or reported to the log file) if a mapping table specified in an
XML or HTML tag is encountered, but no mapping table has been set up using this
function. Several standard mapping tables are provided in the TeraXML package as .h
files. UTF8 and SHIFT_JIS encoded files are handled by default and do require any
mapping tables.

Parameters:

CAT_HANDLE cat: Valid handle to opened catalog.

CHAR *mapName: String representing the map table name. Should correspond to the

HTML/XML file encoding name string.

UINT16 *table; Table of 256 entries containing the UNICODE value that corresponds to

the 8-bit value

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 85

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 ERROR RETURNS (Catalog Interface).
 = 0: Catalog created successfully.

9.1.27 DLL_API catWaitToExit(DWORD millesecTO);

Description:

This will wait until everything in the API has exited (entire DLL)
Can give an expiration (Time Out) value.

Parameters:

 DWORD millesecTO:
 Time out value to wait. If 0, wait until all complete.

Returns:
 INT < 0: Function timed out. See dpapi.h for error code definitions
 ERROR RETURNS (Catalog Interface).
 = 0: All API functions exited.

9.2 Search Subsystem API

9.2.1 DLL_API catXSOpen(CHAR *path, CHAR *name, XS_HANDLE *handlePtr);

Description:

Opens a catalog for searching. The path and name correspond to the
parameters of the catOpen() call. The catalog must exist and should have
a least one catUpdate() execution applied. A handle is returned for use with
subsequent catalog search functions. If the catalog does not exist or
is corrupt, then function will fail.

Parameters:

 CHAR *path: The full path name of the catalog area.
 This parameter can NOT be NULL.

 CHAR *name: Name of the catalog. The catalog must already
 exist. This parameter can NOT be NULL.

 XS_HANDLE *handle:
 Pointer to location to save search handle value. The
 application does not have access to the contents of
 the handle. The handle must be closed by the

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 86

 application using the catXSClose() function. The handle
 is used in all subsequent cat search calls. This
 parameter can NOT be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search Catalog opened successfully.

9.2.2 DLL_API catXSClose(XS_HANDLE xsh);

Description:

Closes a search catalog handle. Handle must be valid value returned from
catXSOpen() call.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search Catalog closed.

9.2.3 DLL_API catXSSearch(XS_HANDLE xsh, CHAR *query, INT mode);

Description:

Performs search of catalog. The query language is the standard TeraXML
query syntax with a couple of additions for context searching.

 (1). context search 'caps in tag "name/first"'

 finds <name>
 <first>caps</first>
 <last> bozo</last>
 </name>

 (2) "a little cap" will search for phrase in exact order by default.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 CHAR *query: Search query -- must not be NULL.

 INT mode: MODE_PRM: Searches only primary database
 MODE_UPD: Searches only update database
 MODE_BOTH: Searches entire catalog

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 87

// Search Options

 MODE_PLURAL - enable plural/deplural search
 MODE_FUZZY - enable fuzzy search
 MODE_STEM - enable stemming
 MODE_THES - enable word/tag thesaurus

 // Search Operation

 MODE_ANDORMODE - enable mode where all hits in a
 document (A & B() get ALL matching
 locators.

 // Search Order

 #define MODE_RELEVANCY_ORDER

 // character folding modes (Note: Must be > 0x2000)

 MODE_FOLD_DIGIT FOLD_DIGIT
 MODE_FOLD_LATIN FOLD_LATIN

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search performed successfully.

9.2.4 DLL_API catXSGetDoc(XS_HANDLE xsh, UINT index, BIGINT *docId, BIGINT *hits);

Description:

After a successful search, a specific hit item can be retrieved.
The number of documents found is returned by catXSGetDocCount().
The item number can be from 1 to this document count.
The document id and the number of hits in that document are returned.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 UINT index: Which document hit to retrieve.

 BIGINT *docId: Pointer to location to put document ID of the
 selected index item. Must not be NULL.

 BIGINT *hits: Pointer to location to put number of hits
 in document. Must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 88

9.2.5 DLL_API catXSGetDocList(XS_HANDLE xsh, DOCHIT *list, UINT start, UINT nItems);

Description:

Retrieves up to nItems of document hit items. A document hit item
is a docId and the number of hits in that document. The total number
of document hits is obtained from catXSGetDocCount(). The structure
DOCHIT is defined in dpapi.h.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 DOCHIT *list: Pointer to buffer of size nItems * sizeof(DOCHIT);

 UINT start: Starting index of nth item in DOCHIT list. First list
 item is index 1.

 UINT nItems: Number of DOCHIT items to retrieve. Note that start +
 nItems - 1 can not be greater than the total number
 of document hits.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.6 DLL_API catXSHitList(XS_HANDLE xsh, UINT16 *aaList, UINT16 *buffer, UINT start,
 UINT nItems);

Description:

Retrieves the list of actual document locators. A document locator
describes the position in the document of the match and any of its
associated attributes. The aaList parameter dictates which values to
return. The buffer must be large enough to hold the number of attributes
per item requested times the number of items.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 UINT16 *aaList: A MAXUINT16 terminated variable list of attribute indexes.
 Some attributes indicate document #, paragraph #, and
 word count. Others are field attributes (e.g. title
 or context id). Any or all of the 17 attribute values
 can be returned. rsapi.h provides the STF mappings
 for these indexes (see STF_ATTRIBUTE_INDICES)

 UINT16 *buffer: A buffer of length(aaList) * nItems * sizeof(UINT16)
 bytes where length(aaList) in the number of indexes
 in the list before MAXUINT16 terminator
 (e.g {0, 3, 6, 15, 0xffff} would be length of 4)

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 89

 UINT start: Starting index of nth item in locator list. First list
 item is index 1.

 UINT nItems: Number of locator items to retrieve. Note that start +
 nItems - 1 can not be greater than the total number
 of document hits.

 NOTE:
 Macro for getting the number of "hits" returned from catXSGetHitList()

 #define catXSGetHitsReturned(xs, cnt) catXSGetExtendedError(xs, cnt)

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.7 DLL_API catXSGetRelevancyList(XS_HANDLE xsh, DOCHIT *list, UINT start, UINT nItems);

Description:

Retrieves up to nItems of document relevancy list. Similar to catXSGetDocList, except
that the documents ID’s are returned in relevancy order and the weighting metirc is
returned in the hit count field. This retrieves the document # (catalog entry) and
relevancy from a set of search results. The relevancy number is a ranking value used
to order the terms. The set is organized from largest
most relevant) to smallest. Note that the catXSSearch method must be called before
performing this method.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 UINT16 *aaList: A MAXUINT16 terminated variable list of attribute indexes.
 Some attributes indicate document #, paragraph #, and
 word count. Others are field attributes (e.g. title
 or context id). Any or all of the 17 attribute values
 can be returned. rsapi.h provides the STF mappings
 for these indexes (see STF_ATTRIBUTE_INDICES)

 UINT16 *buffer: A buffer of length(aaList) * nItems * sizeof(UINT16)
 bytes where length(aaList) in the number of indexes
 in the list before MAXUINT16 terminator
 (e.g {0, 3, 6, 15, 0xffff} would be length of 4)

 UINT start: Starting index of nth item in locator list. First list
 item is index 1.

 UINT nItems: Number of locator items to retrieve. Note that start +
 nItems - 1 can not be greater than the total number
 of document hits.

 NOTE:

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 90

 Macro for getting the number of "hits" returned from catXSGetHitList()

 #define catXSGetHitsReturned(xs, cnt) catXSGetExtendedError(xs, cnt)

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.8 DLL_API catXSGetDocCount(XS_HANDLE xsh, BIGINT *nDocs);

Description:

Returns the number of document "hits" resulting from a search.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 BIGINT *nDocs: Pointer to location for return value. The
 number of documents matching the search query is
 retrieved. The parameter must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.9 DLL_API catXSGetHitCount(XS_HANDLE xsh, BIGINT *nHits);

Description:

Returns the total number of locator hits resulting from a search.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 BIGINT *nHits Pointer to location for return value. The
 total number of locator hits is retrieved.
 The parameter must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 91

9.2.10 DLL_API catXSSetRelevancyTags(XS_HANDLE xsh, INT value, CHAR *tag);

Description:

Set multiplier for highly relevant tags (e.g. <title>). Allows application to set tag
multiplier to influence relevancy feedback. By default, multiplier is 1. Applications
can set this value higher (max value suggested is 16). Any words that match a query
and occur within specified tags will use the specified multiplier. A value of zero can
be used to omit selected tags from relevancy calculations.

Parameters:

XS_HANDLE xsh: Valid handle to opened search catalog object.

INT value; Relevancy multiplier (0..16)

 CHAR *tag; XPath of tag expression or special value:
 "<TITLE>": If hit has attrib. array[7] set, use multipler.

"<PROX>" : If proxmity used, then weight terms in proximity
by multiplier.

"<EXACT>": If words in exact order as query, weight with
multiplier

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.11 DLL_API catXSGetDocMax(XS_HANDLE xsh, UINT32 *maxDoc, INT mode);

Description:

Returns the maximum document value in the primary or update database
or the combination of the two.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 UINT32 *maxDoc: Pointer to location to return maximum document
 information. This parameter must not be NULL.

 INT mode: MODE_PRM: Retrieve the number of documents in
 primary database.
 MODE_UPD: Retrieve the number of documents in
 update database.
 MODE_BOTH: Retrieve the sum of the documents
 for the primary and update databases.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 92

9.2.12 DLL_API catXSGetSearchTime(XS_HANDLE xsh, UINT32 *millSecs);

Description:

Returns time required to perform search.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 UINT32 *millSecs:
 Pointer to location to return time. Time is
 in milliseconds units. Parameter must not be NULL.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.13 DLL_API catXSGetExtendedError(XS_HANDLE xsh, INT *error);

Description:

Returns extended error information (RSAPI error code or query syntax
error).

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 INT *error: Extended error code.

 If function return is XS_RSERROR, then see
 RS_STATUS error codes in rsapi.h.

 If function return is XS_RSQUERY, then see
 QERROR errors in rsapi.h.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 93

9.2.14 DLL_API catXSSetLogFile(XS_HANDLE xsh, CHAR *fileName);

Description:

Sets logging for search operations.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 CHAR *filename: File path of log file.

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.15 DLL_API catXSGetCatalog(XS_HANDLE xsh, CAT_HANDLE *handlePtr);

Description:

Returns the catalog handle in use for the search operations.

Parameters:

 XS_HANDLE xsh: Valid handle to opened search catalog object.

 CAT_HANDLE *handlePtr:
 Pointer to location to return handle. This is useful
 to get catalog handle in order to retrieve
 information from result doc IDs (e.g. to get
 a title or filename associated with a doc hit).

Returns:

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Search operation successful.

9.2.16 DLL_API catXSFinish(VOID);

Description:

Closes all outstanding open search handles and releases resources.

Parameters: NONE

Returns:

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 94

 INT < 0: Error. See dpapi.h for error code definitions under
 "Catalog Search Error Returns".
 = 0: Close of all search handles and resources successful.

9.3 Building with the C API

9.3.1 Include Files

The following two include files are required:

dpapi.h // Include in this order
rsapi.h

Note: dpdefs.h and stddefx.h are included by dpapi.h and rsapi.h and contain basic
definitions.

9.3.2 Library files

dataprep.lib // Include these to lib files in link
libxml.lib

9.3.3 DLL files

dataprep.dll // Load or place DLLs in standard locations
libxml.dll

9.3.4 Compiler Options

Make sure the following defines are set in the compiles of modules using these libraries:

_WIN32,SEEK_64,WIN32,_WINDOWS

Structure alignment is the standard 8-byte alignment factor

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 95

10. Error Conditions and Recovery

10.1 Indexing Subsystem Error Codes

The Indexing Subsystem functions return a 32-bit integer code indication the success of an
operation as shown the table below. All errors are indicated by values less than zero. A positive
value indicates the function performed correctly. Most functions return zero; however, some
procedures return counts that are greater than zero. Error codes are located in the include\dpapi.h
file.

CAT_SUCCESS OK: Catalog Manager API function completed correctly

CAT_ERROR General internal error -- not returned via API

CAT_NOTFOUND When requested document (#) or file does not exist

CAT_FILEERROR When file ops such as copy, rename, or delete fail

CAT_BUFFERSIZE Unable to calculate entry size in catGetEntryBytes

CAT_LOGICERROR Internal assertion or logic check failed

CAT_PARMERROR API parameter out of range or <code>null</code>

CAT_ADDERROR Error closing catalog in fail-safe mode (recoverable)

CAT_FIXEDERROR I/O error reading/writing catalog .idx file

CAT_VARERROR I/O error reading/writing catalog .str file

CAT_LIBERROR Error in library function -- Buffer system failure, or error compressing/deleting
items from catalog

CAT_LSTERROR ** deprecated

CAT_HASHERROR Error building/accessing hash lookup table for file entries

CAT_FILTERERROR The parser (filter) returned an error when processing text in a file. See
cat_ExtendedError for more information.

CAT_DPERROR Error in building inverted index. See cat_ExtendedError.

CAT_MERGEERROR Error merging databases. See cat_ExtendedError

CAT_DUPERROR Attempt to add a file that already exists in catalog.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 96

CAT_STFERROR Empty STF file, unable to build index

CAT_CREATEPARSER Unable to create parser object

CAT_BADHANDLE CatalogManager handle not initialized, already opened, closed.

CAT_DIRERROR Directory does not exist or can not be created.

CAT_EXISTSERROR Requested catalog already exists in catCreate()

CAT_TO ** deprecated

CAT_CREATEXML ** deprecated

CAT_CONTEXTMERGE Error merging context trees for XML or tagged files

CAT_CONTEXTFAIL Error building context tree

CAT_FUZZYERROR Setting fuzzy match option after catalog has indexed data.

CAT_FUZZYOPEN Error opening fuzzy logic file.

CAT_FUZZYMERGE Error merging fuzzy logic files. (corrupt)

CAT_STEMERROR Setting stemming mode after catalog has indexed data

CAT_STEMOPEN Error opening stem thesaurus file.

CAT_STEMMERGE Error merging stem thesaurus files. (corrupt).

CAT_READONLYERROR Calling catalog changing function while opened in READ ONLY mode.

CAT_SECURITYERROR ** Java version only.

CAT_UNKNOWNERROR ** Java version only.

CAT_SHAREERROR ** Java version only.

CAT_FILEOPENERROR Unable to open file header (i.e. determine file type)

CAT_SPARMERROR Call to catAddMap8() function without SRC2STF_PARMS set.

CAT_PROCESSERROR Error in process file (for recoverable ADD mode)

CAT_ADDEXECERROR Error executing add process in fail-safe (recoverable) mode.

CAT_NOTIMPLEMENTED Filter not implemented.

CAT_NOPRIMARY No primary database found for merge.

CAT_NOUPDATE No update database found for merge.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 97

10.2 Search Subsystem Error Codes

The Search/Retrieval subsystem (catXS* set of functions) returns "XS_" errors as shown in the
table below. Most functions require a valid XS_HANDLE that is checked by every function; if
not valid, the XS_BADHANDLE error is returned. Extra error information can be obtained (if
available) after receiving an error code return. The catXSGetExtendedError() can retrieve this
information unless the error is a BADHANDLE or XS_OBSOLETE error.

XS_SUCCESS No error (0) - ERRORS < 0

XS_ERROR ** deprecated

XS_INITERROR Unable to initialize search library (missing DB files).

XS_PARMERROR Bad parameter values (range or null) to search function.

XS_CATOPEN Unable to open CatalogManager handle, bad path or missing catalog.

XS_DBOPEN Unable to open database handle in catalog (.prm or .upd files).

XS_BADHANDLE CatalogSearch object not initialized or opened.

XS_RSERROR Search library error. See catXSGetExtendedError() for more details.

XS_RSQUERY Bad query for catXSSearch. See #catXSGetExtendedError() for more details.

XS_NOUPDATE Attempt to search just update database and update does not exist.

XS_NOPRIMARY Attempt to search primary with no index data.

XS_NORESULTS Request for results when no search performed or empty search (e.g.
catXSGetDoc() method).

XS_NODB Attempt to open database that has not been indexed.

XS_CLOSERROR Error closing CatalogManager object.

XS_CATERROR **deprecated.

XS_LOGICERROR Unexpected error closing handle.

XS_ALLOCERROR Unable to allocate document list in search open.

XS_CONTEXTERROR Unable to open context handle.

XS_THESOPEN Unable to open Thesaurus object.

XS_STEMOPEN Unable to open Stemming map object.

XS_FUZZYOPEN Unable to open Fuzzy lookup object.

XS_SELECTERROR Search library error. See catXSGetExtendedError()for more details.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 98

XS_OBSOLETE Catalog has been updated - refresh handle for latest state.

XS_NODOCS No documents in database. (all deleted).

XS_RSSEARCH Search error (but not query format error). See catXSGetExtendedError().

XS_RELTAG Error in tag lookup for relevancy weighting.

XS_UNKNOWN Unexpected error in CatalogSearch method.

10.3 Linguistics Subsystem Error codes

The Linguistics Subsystem does not implement error codes. Error conditions are flagged by a
descriptive error message in the XML message returned by the server.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 99

11. Language Codes

TeraXML uses ISO 639 language codes. The following table describes the language codes used
by the Linguistics Subsystem.

Language Code

English en

Chinese zh

Korean ko

Japanese ja

German de

French fr

Italian it

Spanish es

Arabic ar

A complete list of ISO 639 language codes can be found at the URL
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

TeraXML 6.0 Programmer’s Guide Page 100

12. API Glossary

Term Definition

Attribute A 16-bit field available to define word context. An attribute array is the
collection of all attributes that apply to a particular word, object, or operation.
TeraXML provides 16 attributes, some of which are used by the system and
other may be user defined.

CAT_HANDLE Handle to catalog operations.

Context Tree Tree containing the tag/attribute information. This is an n-ary tree with a
control root and organizes with level 1 sub-trees for each document type.

.DAT file File type that contains the full text searchable database. The .upd and .prm
extensions are used to denote primary and update versions of the .dat file.

DOC_HIT A document ID and locator hit count pair.

Double Metaphone Algorithm for performing a phonetic reduction. Superior to more common
Soundex procedures for name matching.

DRI Dictionary Region Index. A value between 0 and 15. There are 16 different
possible dictionaries. Each dictionary can have its own type.

Fuzzy Search Method of taking phonetic reductions of words in order to match correctly
and/or incorrectly spelled variations.

Locator A document position and attribute value object (array of UINT16)

Stemming The process of decomposing a word into its root word.

SRC2STF_PARMS Control block parameter for the Catalog API. Controls and specifies optional
information for the parser modules.

STF Standard Token Format. Input file format to data preparation process. Provides
a common interchange text format for the indexing software.

XS_HANDLE Handle to XS search operation.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

TeraXML 6.0 Programmer’s Guide Page 101

13. Technical Support

Doclinx provides technical support for TeraXML via email. Please direct support questions to
techsupport@doclinx.com.

Doclinx offers customized technical support such as 24x7 support, on-site support etc. upon
request.

Doclinx Confidential, Do Not Distribute without permission Copyright © 2005, Doclinx, Inc.

mailto:techsupport@doclinx.com

	Introduction
	TeraXML Architecture
	Overview
	Indexing Subsystem
	Catalogs
	STF Generation
	Catalog Synchronization

	Search Subsystem
	Linguistics Subsystem
	Tokenizer
	Part-of-speech Tagger
	Sentence Boundary Detection
	Base Noun Phrase detection
	Named Entity Extraction
	Supported Languages

	Document Parsing Subsystem

	TeraXML Internals
	Indexing Subsystem – STF Generation
	Indexing Subsystem – Catalog Synchronization
	Dictionary Build
	Locator Inversion
	Optimization
	Full-Text Database Creation

	Indexing Subsystem – Catalog Merge
	Search Subsystem
	Linguistics Subsystem
	Document Parsing Subsystem

	Key Data Structures and Concepts
	Locators
	Attributes
	Virtual Arrays
	LRU Hard disk & Database Buffering
	Config.sys or template.sys

	Context Trees
	Thesaurus Structures
	Plurals
	Obsolete Search Handles

	TeraXML Query Language
	Query Examples
	Grammar
	Notes
	OPNODE Query Parse Tree Structure

	TeraXML Linguistics API
	Processing a local file text file
	Request Format
	Response Format – Output XML

	Error Handling

	TeraXML Search and Retrieval API
	TeraXML XML over HTTP API
	Using the SearchAgent API in XML Mode
	Status Command
	Show Command
	Start Command
	Stop Command
	Search Command
	Linguistics Command
	Suggestions Command
	Properties Command
	CatalogItem Command
	Response attributes common to all commands
	Using the SearchAgent API in Multiple Parameter mode

	IndexAgent API
	Copy Catalog Command
	Create Catalog Command
	Delete Catalog Command
	Database Command
	Spider Command
	Delete Command
	Merge Command
	Show Command
	Status Command
	Version Command
	MapFile Command

	Testing the SearchAgent and IndexAgent

	TeraXML C API
	Search Subsystem API
	Building with the C API
	Include Files
	Library files
	DLL files
	Compiler Options

	Error Conditions and Recovery
	Indexing Subsystem Error Codes
	Search Subsystem Error Codes
	Linguistics Subsystem Error codes

	Language Codes
	API Glossary
	Technical Support

